上杭县生活垃圾焚烧发电项目 竣工环境保护验收监测报告书 (公示本)

建设单位: 上杭红新能源科技有限公司

编制单位:福建宏其检测科技有限责任公司

2024年2月

建设单位法人代表:(签章)

编制单位法人代表:(签章)

项目负责人: 林光辉

报告编写人: 林光辉

建设单位: 上杭红新能源科技有 编制单位: 福建宏其检测科技有

限公司(盖章) 限责任公司(盖章)

电话: 电话:

传真: 传真:

邮编: 364200 邮编: 350001

地址:福建省龙岩市上杭县临城 地址:福州市鼓楼区软件大道89

镇土埔村狮子潭路 10 号 号福州软件园 D 区 41 号楼 4 层

目录

1	项目	目概况	1		5
2	验收	欠依据	ļ		6
	2.1		建设项	页目环境保护相关法律、法规和规章制度	6
	2.2		建设项	页目竣工环境保护验收技术规范	6
	2.3		建设项	项目环境影响报告书及其审批部门审批决定	7
3	项目	目建设	情况		8
	3.1		工程根	既况	8
	3.2		地理位	立置及平面布置	8
		3.2.1	Ŋ	页目平面布置	9
		3.2.2	2. 交	と通运输道路布置	10
	3.3		建设内	内容	16
		3.3.1	.]	工程组成和建设内容	16
		3.3.2	主主	上要设备	24
	3.4		主要原	泵辅材料及燃料	26
	3.5		水源及	及水平衡	28
	3.6		生产コ	[艺	29
		3.6.1	生	上产工艺流程简介	29
		3.6.2	. ~	餐厨垃圾处理工艺	31
	3.7		项目变	运动情况	35
4	主要	要污染	源、污	亏染物及治理措施	41
	4.1		废水		41
		4.1.1	. <u>生</u>	上产废水	41
		4.1.2	2 生	೬活污水	42
	4.2		废气		43
		4.2.1	Ÿī	亏染源及主要污染物	43
		4.2.2	Į Đ	不保措施	43
	4.3		噪声		46

		4.3.1	污染源	46
		4.3.2	环保措施	47
	4.4	固有	本废物	47
		4.4.1	一般工业固体废物	48
		4.4.2	危险固体废物	48
	4.5	其何	也环境保护设施	51
		4.5.1	环境风险防范设施	51
		4.5.2	规范化排污口、检测设施及在线监测装置	52
		4.5.3	厂区绿化	56
		4.5.4	自行检测	57
		4.5.5	地下水井建设及厂区防渗情况	57
	4.6	环色	呆设施投资及"三同时"落实情况	59
		4.6.1	环保设施投资	59
5	环境	意影响报台	告书主要结论与建议及其审批部门审批决定	62
	5.1	环块	竟影响报告书主要结论与建议	62
		5.1.1	主要结论	62
		5.1.2	验收要求落实情况	62
	5.2	审打	北部门审批决定	67
	5.3	审打	批部门审批决定落实情况	71
6	验收	女执行标》	隹	75
	6.1	废力	K	75
	6.2	废		75
	6.3	噪声	盐	77
	6.4	固化	本废物	77
	6.5	环坎	竟质量	77
7	验收	文监测内 名	容	79
	7.1	废刀	K	79
	7.2	废		79
		7.2.1	有组织排放	79
		7.2.2	无组织排放	80

	7.3		厂界	早噪声	80
	7.4		固体	运物	80
	7.5		环境	竞质量	80
8	质量	是保证	和质	〔量控制	83
	8.1		监测	分析方法	83
		8.1.1	-	废水	83
		8.1.2	2	废气	83
		8.1.3	3	噪声	86
		8.1.4	ļ	固体废物	86
	8.2	检测化	义器.		86
	8.3	人员信	言息.		88
	8.4	水质』	监测匀	分析过程中的质量保证和质量控制	88
	8.5	气体』	监测匀	分析过程中的质量保证和质量控制	89
	8.6	燥声』	监测匀	分析过程中的质量保证和质量控制	99
9验	收监	测结	果		100
	9.1 2	生产_	工况.		100
	9.2	污染物	勿排力	放监测结果	101
		9.2.1	废力	k	101
		9.2.2	2废气	₹	105
		9.2.3	5 厂 星	早噪声	117
		9.2.4	上固	(液)体废物	118
		9.2.5	污染	杂物排放总量核算及处理效率核算	120
	9.3	工程類	建设	对环境的影响	122
10		验收	监测	结论	125
	10.1		环保	R设施处理效率	125
	10.2	,	废水	<	125
	10.3		废气	Ĺ	125
		10.3.	.1	有组织废气	125
		10.3.	.2	无组织废气	125
	10 4		噪声	ā	126

1	0.5	固体废物	126
1	0.6	工程建设对环境的影响	126
1	0.7	总量控制	126
1	0.8	结论及建议	127
附件:	1: 项目	委托书	129
附件2	2: 环评	批复	130
附件:	3: 应急	预案及备案文件	137
附件 4	4: 排污	许可证	138
附件:	5: 炉渣	清运和处置合同	139
附件(6: 取水	许可证	142
附件?	7: 飞灰	转运申请报告	143
附件 8	8: 污水	接管函	145
附件。	9:项目	所在声功能调整通知	147
附件:	10: 危房		154
附件:	11: 土墳	襄污染状况调查报告评审意见	159
附件:	12: 炉濯	查及飞灰检测报告	160
附件:	13: 在约	线设备验收报告	178
附件:	14: 工步	元证明	315
附件:	15:验收	女检测报告	319
附件:	16: 企业	上防渗防腐验收报告	416
附件:	17: 除身	是剂技术说明	444
附件:	18: 化力	k污水管理制度	452
附件:	19:性負	'	454
附件2	20: PNG	CR 技术协议	487
附件2	21: 自行	· 方检测合同	507
附件2	23: 自查	查报告	512
附件2	24: 验收	女意见	519
附件 2	25: 验收	女公示	527
附件 2	26: 复审	F意见	528
附件:	27. 其年	也需要说明事项	529

1 项目概况

随着经济的发展,人口的增加,居民生活水平的提高,生活垃圾的产生量越来越大,使得上杭县环境卫生管理压力越来越大上杭县现有生活垃圾无害化填埋场剩余库容已不足 4 年,亟待进行扩容提升改造。因此上杭县新建一座垃圾资源化无害化处理设施,解决垃圾处置难题,变得十分紧迫。

上杭县决定建设生活垃圾焚烧发电项目。项目主要建设规模为 600t/d,设 2 条 300t/d 垃圾焚烧生产线,配 1×12MW 凝汽机组,预计建设工程分二期建设,其中,一期工程建设 1 条 300t/d 焚烧生产线,配 1×12MW 凝汽机组,建设 1 条 30t/d 餐厨垃圾生产线,二期工程增建 1 条 300t/d 生活垃圾焚烧生产线。

上杭县住房和城乡建设局于 2019 年 1 月委托福建省金皇环保科技有限公司进行《上杭县生活垃圾焚烧发电项目》环境影响评价工作。2020 年 2 月,完成《上杭县生活垃圾焚烧发电项目环境影响报告书》编制。2020 年 2 月 24 日,龙岩市生态环境局出具审批意见(龙环审[2020]68 号,见附件 2)。

2020年07月13日,福建东飞环境集团有限公司与上杭县住房和城乡建设局签署上杭县生活垃圾焚烧发电PPP项目投资合作协议。为保证项目日常运行,福建东飞环境集团有限公司成立上杭红新能源科技有限公司作为运营单位。项目于2020年12月11日开工建设,一期、二期工程同步建设。2023年11月完工,2023年08月17日取得排污许可证(见附件4),2023年08月27日项目完成72+24h满负荷试运行,2023年12月14日通过性能试验(见附件19),2024年03月,通过在线设备CEMS验收(见附件13),并与重点排污单位自动监测与基础数据库系统联网。

2023年11月,上杭红新能源科技有限公司委托福建宏其检测科技有限责任公司协助进行上杭县生活垃圾焚烧发电项目工程竣工环境保护验收工作。2023年12月,我公司组织技术人员对该工程进行了现场勘查,2024年01月15日~01月18日,福建宏其检测科技有限责任公司根据现场勘查情况开展了本项目竣工环境保护验收监测,并在竣工环境保护验收监测结果、现场环境管理检查及企业自查报告等资料的基础上编制本项目竣工环境保护验收监测报告。

2 验收依据

2.1 建设项目环境保护相关法律、法规和规章制度

- 1、《中华人民共和国环境保护法》,2014年修订,2015年1月1日起施行;
- 2、《中华人民共和国水污染防治法》,2017年6月修订,2018年1月1日起施行;
 - 3、《中华人民共和国大气污染防治法》,2018年10月26日修订并施行;
 - 4、《中华人民共和国环境噪声污染防治法》, 2018年12月29日修订;
- 5、《中华人民共和国固体废物污染环境防治法》,2020年4月29日修订,2020年9月1日起施行。

2.2 建设项目竣工环境保护验收技术规范

- (1) 生态环境部公告 2018 年第 9 号《关于发布<建设项目竣工环境保护验 收技术指南 污染影响类>的公告》;
- (2) 环境保护部国环规环评[2017]4 号《关于发布<建设项目竣工环境保护 验收暂行办法>的公告》;
 - (3)《污水综合排放标准》(GB 8978-1996);
 - (4)《危险废物填埋污染控制标准》(GB 18598-2019);
 - (5)《城市污水再生利用 工业用水水质》(GB/T 19923-2005);
 - (6)《生活垃圾焚烧污染控制标准》(GB 18485-2014);
 - (7)《生活垃圾焚烧污染控制标准》(GB 18485-2014)修改单;
 - (8)《恶臭污染物排放标准》(GB 14554-93);
 - (9)《大气污染物综合排放标准》(GB 16297-1996);
 - (10)《工业企业厂界环境噪声排放标准》(GB 12348-2008);
 - (11)《环境空气质量标准》(GB 3095-2012);
 - (12)《一般工业固体废物贮存和填埋污染控制标准》(GB 18599-2020);
 - (13)《危险废物收集贮存运输技术规范》(HJ 2025-2012):
- (14)《关于印发<污染影响类建设项目重大变动清单(试行)>的通知》 (环办环评函〔2020〕688号), 2020年12月13日;

- (15)《关于印发<污染影响类建设项目重大变动清单(试行)>的通知》 (环办环评函〔2020〕688号), 2020年12月13日:
- (16)《关于印发建设项目竣工环境保护验收现场检查及审查要点的通知》 (环办〔2015〕113号);
 - (17)《危险废物贮存污染控制标准》(GB 18597-2023)。

2.3 建设项目环境影响报告书及其审批部门审批决定

- (1)福建省金皇环保科技有限公司,《上杭县生活垃圾焚烧发电项目环境影响报告书》,2020.02;
- (2) 龙岩市生态环境局(龙环审[2020]68号)《关于上杭县生活垃圾焚烧 发电项目环境影响报告书的审批意见》,2020.02.24。

2.4 其他相关文件

- (1)《验收监测委托书》;
- (2)《上杭红新能源科技有限公司排污许可证》;
- (3)《上杭红新能源科技有限公司突发环境事件应急预案》:
- (4)《上杭红新能源科技有限公司土壤和地下水自行监测方案及自行监测报告》。

3 项目建设情况

上杭县生活垃圾焚烧发电项目厂址位于福建省龙岩市上杭县临城镇土埔村狮子潭路 10号,上杭县生活垃圾焚烧发电项目于 2020年 12月 11日开工建设,一期、二期工程同步建设。项目主要建设规模为 600t/d,设 2条 300t/d 垃圾焚烧生产线,配 1×12MW 凝汽机组。

3.1 工程概况

- (1) 项目名称: 上杭县生活垃圾焚烧发电项目;
- (2) 项目公司: 上杭红新能源科技有限公司;
- (3) 建设性质:新建;
- (4) 建设地点:福建省龙岩市上杭县临城镇土埔村狮子潭路 10号;
- (5) 用地面积: 用地面积 6.40hm²;
- (6) 项目性质: 城市建设基础设施, 属垃圾资源利用及环境保护工程;
- (7) 总投资:项目总投资 39114.38 万元;
- (8) 定员: 本项目劳动定员 65 人;
- (9) 年运行时间: 8000h;
- (10) 开工建设时间: 2020年12月;
- (11) 试生产时间: 2023年08月;
- (12)排污许可证取得时间: 2023 年 8 月 17 日,编号: 91350823MA342YYF9X001V:
 - (13) 项目中心经纬度: 116° 27′ 1.01″, 25° 2′ 30.98″;
- (14)本次验收范围:上杭县生活垃圾焚烧发电项目工程主体建设内容及相关辅助设施,运输过程不属于本次验收范围。

3.2 地理位置及平面布置

本项目为新建项目,项目地点位于龙岩市上杭县临城镇土埔村狮子潭路 10号。项目南侧为上杭县生活垃圾无害化处理场。其余侧均为山地,本项目地理位置见图 3.2-1;原项目平面布置见图 3.2-2;现项目平面布置见图 3.2-3;项目雨污管网图见图 3.2-4;项目周边关系图见图 3.2-5;项目环境敏感目标一览表

见表 3.2-1。

表 3.2-1 环境敏感目标一览表

环境要素	环境敏感与保护目 标	与生产车间方 位、最近距离	人口数量	功能	环境功能区划或保护 级别
	土埔村	西南面约 521m	1450		
	上杭县城	西北面约 1343m	493809		GB 3095-2012《环境
大气环境	城东村	西北面约 1855m	5350	居住	空气质量标准》
	黄竹村	西南面约 1250m	1680		二类区
	百联堂	南面约 1426m	300		
	汀江	西南侧约 500m			GB 3838-2002《地表
水环境	丰村溪石禾仓水厂 饮用水源一级保护 区	保护区边界距项 396m,取水口距		工业、农 业用水	水环境质量标准》II 类水域
声环境	厂界外 200m	n范围无声环境敏感	目标	/	GB 3096-2008《声环 境质量标准》 2 类区

3.2.1 项目平面布置

原工程设计平面图焚烧发电厂生产区位于厂区偏西北部,主厂房设在中央地带,焚烧发电厂房座东,卸料大厅朝西。自西向东依次布置卸料大厅、垃圾池及给料平台、焚烧炉间、烟气净化间、烟囱等。汽机房、主控及安环楼与焚烧发电厂房平行布置,10kV出线走廊朝南。化水车间、空压站、维修车间等设在卸料大厅下方。

烟囱、飞灰固化养护棚、点火油库、和渗滤液处理站均设在主厂房东侧。冷却塔、净水站及工业水池设在厂区东南角;综合办公楼设在厂区南部,并设健体及休闲场地;餐厨垃圾处理车间布置于厂区东侧,与渗滤液处理站相邻,车间南侧设硬地作为回车空间;焚烧发电厂设人流及物流两个入口,两个入口均位于厂界南端。垃圾及原料运输经焚烧发电厂物流入口进入厂区,经过地磅后向北,沿地势经上料栈桥直达卸料大厅,向东直达餐厨垃圾处理车间。焚烧发电厂人流经人流入口后向北,可达综合办公楼。厂区内设环形消防道路。

现总平面图中,事故应急池位置调整至主厂房南侧;固化飞灰养护棚、冷却塔、工业水池调整至主厂房北侧,餐厨垃圾处理间位置调整至主厂房内西侧;其他建筑位置基本不变。该变动均为项目红线内,且项目 200m 范围内无敏感目标,该变动未新增敏感目标。

 名称
 方位调整情况

 焚烧厂房
 未变化

 烟囱
 未变化

 汽机房及主控安防楼
 未变化

 卸料大厅
 未变化

 垃圾池及给料斗间
 未变化

未变化

调整至焚烧厂房北侧

调整至焚烧厂房北侧

调整至焚烧厂房北侧

未变化

未变化

调整至焚烧厂房南侧

调整至焚烧厂房内西侧

表 3.3-1 主体建筑方位调整情况

3.2.2 交通运输道路布置

烟气净化间 固化飞灰养护棚

工业水池

冷却塔

渗滤液处理站

综合楼

事故应急池

餐厨垃圾处理间

序号

2

3

4

5

6

8

9

10

11

12 13

项目工程设 2 个出入口位于厂区的南面。沿着厂区西南面的出入口为进入厂区有垃圾运输车及灰渣运输车。垃圾车由该大门进入厂区,经地磅计量后,通过坡道驶入卸料平台,卸入垃圾池,并沿原路返回。沿着厂区东南面的出入口为进入厂区有生产人流、参观车流。生产人流及参观车流沿着厂区主干道,来到主厂房南面主厂房主入口,进入主厂房。

厂区内道路为城市型混凝土道路,主要建筑物四周采用环形通道设计,在 满足生产工艺流程的条件下,力求运输畅通,运距短捷,避免不必要的迂回。 并且消防道路和运输道路相结合,消防车辆可以迅速驶达厂内各个建筑物。

厂外运输道路属于项目配套工程,不属本项目建设内容。

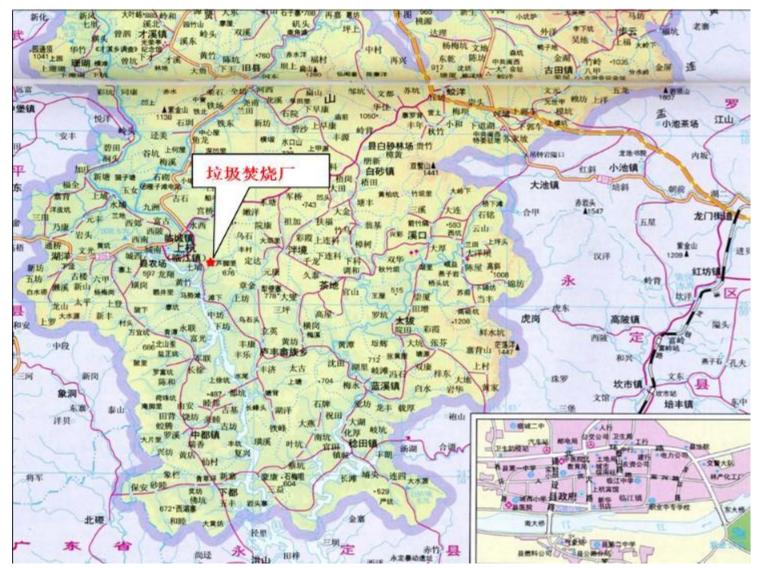


图 3.2-1 项目地理位置图

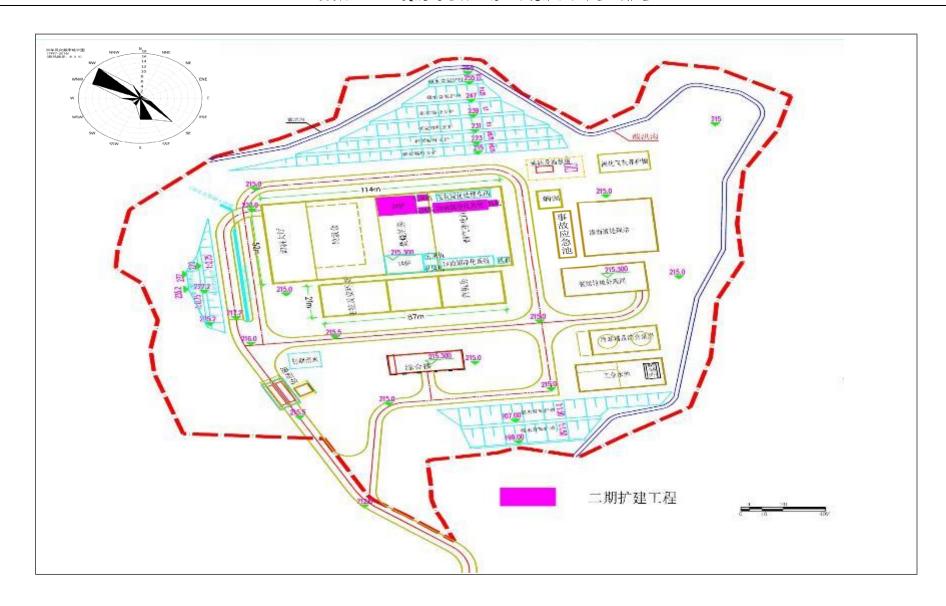


表 3.2-2 原项目平面布置图

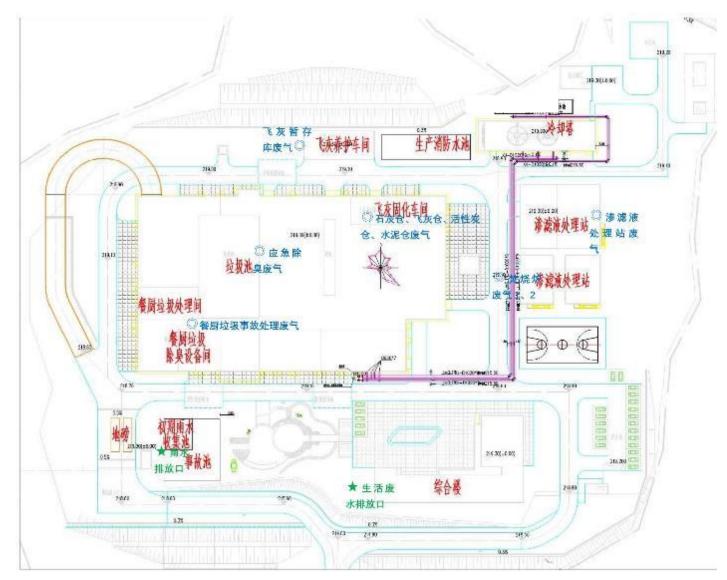


表 3.2-3 现项目平面布置图

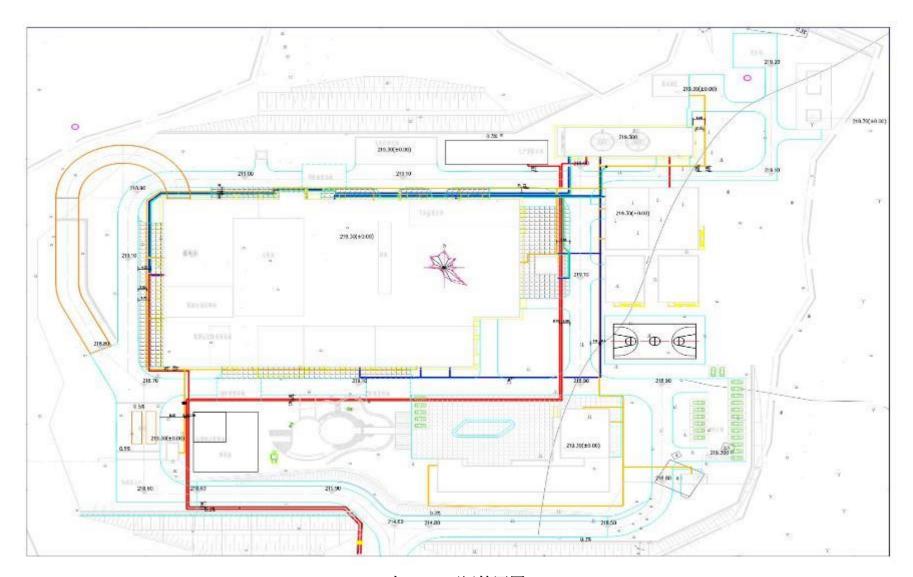


表 3.2-4 雨污管网图

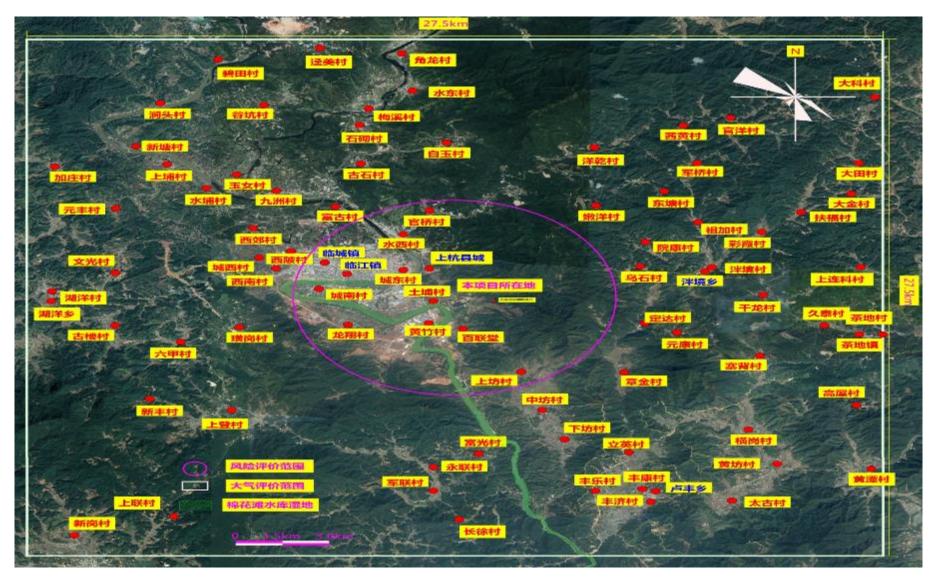


图 3.2-5 项目周边关系图

3.3 建设内容

3.3.1 工程组成和建设内容

上杭县生活垃圾焚烧发电项目,主要建设规模为600t/d,设2条300t/d垃圾焚烧生产线,配1×12MW凝汽机组,工程分二期建设,其中,一期工程建设1条300t/d焚烧生产线,配1×12MW凝汽机组,建设1条30t/d餐厨垃圾生产线,二期工程增建1条300t/d生活垃圾焚烧生产线。一期、二期工程同步建设。建设项目实际建设情况见表3.3-1。

表 3.3-1 项目实际建设内容与环评要求对比一览表

	文 3.3-1 项目关阶建议内台与外厅安水利 L 见衣								
	 类别	环评阶段建设内容		 	变动情况	 备注			
-	人 加	一期工程	二期工程	关 协定议内谷间记	又例用地	番任			
	一、主体工程								
	厂内垃圾 运输	厂区在界西南端设二个出入口。垃圾及物料起口后向西北进入生产区,人流及办公车辆经厂达办公区域,实现了厂区人流与物流的分离		与环评一致	无变动				
垃圾 接 收、	厂内垃圾 接收	垃圾卸料平台布置在主厂房 7.0m 层,紧贴垃圾池,采用室内型,卸料平台,宽 21.00m,长 52.00m,设卸料位 4 个。	依托一期工程	与环评一致	无变动				
储 存、 输送 系统	垃圾贮坑	长 40.5m, 宽 24.0m, 卸料口地上标高7.0m, 地下部分-3.0m, 总有效容积13600m³, 可贮存垃圾约 5440t, 满足全厂9天的焚烧量。	依托一期工程	与环评一致	无变动				
	垃圾入炉 输送	2 台 11t 垃圾吊车,抓斗容积 6.3m³,一备一用,垃圾吊车控制室,设置密闭、安全防护的观察窗。	依托一期工程	与环评一致	无变动				
焚烧	焚烧炉	1 台 300t/d 的机械炉排炉	1台300t/d的机 械炉排炉	与环评一致	无变动				
系统	点火辅助 燃料系统	每台焚烧炉各配 1 台点火燃烧器和 1 台辅助燃烧器,均使用 0#轻柴油为燃料		与环评一致	无变动				
垃圾 焚烧	烟囱	每台焚烧炉配 1 根排气烟道, 高度 10 D=1.5m, 2 根集束式排气烟道通过一座钢筋支承。		出口内径变为 1.4m, 其余不变	出口内径变 为 1.4m				
系统	除渣系统	每台垃圾焚烧炉配 1 台液压水封水冷却出渣板 3.125t/h,炉渣排入渣池,设起重机 1 台,抓		与环评一致	无变动				

续表 3.3-1

	米見	ı	环评阶段建设内容		实际建设内容情况	变动情况	 备注
	类别 ————————————————————————————————————		一期工程	二期工程	,	文列用机	金
		论发电机 且配置	选择 1×12MW 凝汽式汽轮发电机组,配一级减温减压大旁路,发电能力 4.08Mkw/h	依托一期工 程,发电能力 8.37Mkw/h	与环评一致	无变动	
垃圾 热能	余	热锅炉	配 1 台余热锅炉,产汽量为 25.8t/h	配 1 台余热锅 炉,产汽量为 25.8t/h	配 2 台余热锅炉,产汽量为 26t/h	产气量增加 0.2t/h	
利用系统	汽机热力 系统		采用"机随炉"的运行方式,包括主蒸汽系统、主给水系统、回热抽汽系统、主凝结水系统、化学除盐水补给系统、锅炉排污系统、疏放水系统、炉内加药系统、汽水取样冷却系统、锅炉上水、放水系统、抽真空系统、循环冷却水系统、汽轮机润滑油储存和油净化装置、工业水系统。		与环评一致	无变动	
餐厨均	立圾处	理系统	建设一条 30t/d 餐厨垃圾处理生产线, 预处理工艺: 卸料仓缓存、固液分离、渗滤液油脂回收等		与环评一致	无变动	
				二、公辅工程			
公用	给水工程	供水系 统	电厂供水水源取自汀江,新建2根 DN200 引水管至取水泵房,经泵加压输送至焚烧 厂净水站,取水泵房设在汀江旁。取水规 模、净水、厂内供水系统,不属于环评 评价范围	依托一期工程	与环评一致	无变动	
工程		化学水 系统	反渗透前预处理设备为二列,单列制水量为 15t/h,反渗透装置为 1 套,单套制水能力 10t/h。混床为二列,单列制水能力亦为 10t/h。	依托一期工程	与环评一致	无变动	

续表 3.3-1

	类别		环评阶段	建设内容	实际建设内容情况	变动情况	夕 汁
	尖力	Ŋ	一期工程	二期工程	头阶建区内谷情况	文列情况	备注
	给水工	循环水 系统	设 2 台循环水泵, 1200m³/h、H=22m、 N=120kW,安装在冷却塔集 水池下方的综合水泵房内, 配 1 座 1500m³/h 通风冷却塔	设 2 台循环水泵, 1200m³/h、H=22m、 N=120kW,安装在冷却塔集 水池下方的综合水泵房内, 配 1 座 1500m³/h 通风冷却塔	与环评一致	无变动	
	程	消防水 系统	厂区消防一次总水量为 540m³,分别储存在2座 2000m³工业水池内。	依托一期工程	专门储存在 1 座 580m³消防水池	消防水池 位置及容 积变化	
公用 工程	汽机热力 系统		采用"机随炉"的运行方式,包括主蒸汽系统、主给水系统、回热抽汽系统、主凝结水系统、化学除盐水补给系统、锅炉排污系统、疏放水系统、炉内加药系统、汽水取样冷却系统、锅炉上水、放水系统、抽真空系统、循环冷却水系统、汽轮机润滑油储存和油净化装置、工业水系统。		与环评一致	无变动	
	採用生产废水、生区雨水管网送至厂内化粪池处理后边4中最高允许排放复氮等参照 GB/T标准》B等级标准废水经新建渗滤滤污水处理厂处理。电力工程		采用生产废水、生活污水和雨区雨水管网送至厂外雨水管网内化粪池处理后达到GB8978-4中最高允许排放浓度的三级绿氨氮等参照GB/T31962-2015标准》B等级标准,生活垃圾废水经新建渗滤液处理站预处污水处理厂处理。	。本项目产生的生活污水经厂 1996《污水综合排放标准》表 际准进入市政污水管网,其中 《污水排入城镇下水道水质 、餐厨垃圾渗滤液及其他生产	生活垃圾、餐厨垃圾渗滤液及其他生产废水经新建渗滤液处理站处理达回 用水质标准后回用于冷却塔,其余与 环评一致。	生产废水去向改变	
			电厂接入系统方案拟以1回10 10kV侧连接接入系统。	0kV线路与110kV黄竹变电站	与环评一致	无变动	

续表 3.3-1

	米山	环评阶段3	建设内容		亦計建四	夕沙
	类别	一期工程	二期工程		变动情况	备注
公用	空压机站	配备 0.78MPa、30Nm³/min 的 螺杆式空压机 2 台	配备 0.78Mpa、30Nm³/min 的螺杆式空压机 1 台	与环评一致	无变动	
工程	交通道路	厂外道路属于政府配套工程	呈,不属于环评评价范围	与环评一致	无变动	
	渣池	渣池深 3m, 宽 4m, 长 36m, 在渣坑中部设有沉淀池 和澄清池,通过污水泵将积 存于渣坑的污水定期外排到 调节池。100m³渣仓内设炉渣 起重机 1 台, 抓斗容积 3.0m³。	依托一期工程	与环评一致	无变动	
	飞灰仓	设置1个150m³的钢制灰仓	依托一期工程	与环评一致	无变动	
储运	轻柴油油罐 油泵房	设 1 台 30m³ 储油罐,配 2 台 3.8m³/h1.0MPa 螺杆泵	依托一期工程	与环评一致	无变动	
工程	活性炭仓	设1个1m3的活性炭仓	依托一期工程	活性炭仓容积从 1m³增加至 10m³	容积增加	
	石灰粉仓	设1个有效容积30m3石灰贮仓	依托一期工程	设 1 个有效容积 40m³ 石灰贮仓(干法)和 1 个 80m³ 石灰贮仓(半干法)	容积和数 量增加	
	水泥仓	设置1个30m3的钢制水泥仓	依托一期工程	与环评一致	无变动	
	尿素储罐	设有2个3.9m3尿素储罐	依托一期工程	尿素储罐变更为氨水储罐	取消建设	
	氨水储罐	/	/	设有 1 个 30m3 氨水储罐	新增	
	螯合剂原液 罐	设有 2 个 1m³ 螯合剂原液罐 (由聚丙烯或等同材料制 成)	设有 2 个 1m³ 螯合剂原液罐 (由聚丙烯或等同材料制 成)	与环评一致	无变动	

续表 3.3-1

	类别	环评阶段?	建设内容	分 尼 尹	变动情况	夕沪
	尖 別	一期工程	二期工程	实际建设内容情况	文列情况	备注
储运 工程	飞灰固化块 养护	飞灰稳定化处理时,将烟气 净化系统捕集下来的飞灰输 送至 150m³飞灰贮仓;飞灰 经固化稳定化处理后,送至 养护棚干化、稳定养护棚。 养护棚面积 360m²	依托一期工程	飞灰稳定化处理时,将烟气净化 系统捕集下来的飞灰输送至 150m³ 飞灰贮仓;飞灰经固化稳定化处 理后,送至养护间干化、稳定养 护棚。养护间面积 360m²	养护棚变更建 设为养护间, 更加遮风挡雨	
	危废暂存间	危险废物暂存间占地面积约 300m²	依托一期工程	危险废物暂存间占地面积约 60m²	占地面积减少	
			三、环保工程			
	烟气治理 设施	1 套,采用"SNCR 脱硝+旋转 喷雾反应塔+干粉喷射+活性 炭喷射+布袋除尘器"串联的 烟气净化工艺	1 套,采用"SNCR 脱硝+旋转喷雾反应塔+干粉喷射+活性炭喷射+布袋除尘器"串联的烟气净化工艺	2 套 SNCR 脱硝+PNCR 脱硝+旋转 喷雾反应塔+干粉喷射+碱液喷射 系统脱酸+活性炭喷射+布袋除尘 器	新增 PNCR 脱 硝+碱液喷射 系统脱酸	
	烟囱	每台焚烧炉配1根排气烟囱,高 D=1.5m; 2根集束式排气烟囱; 支承。		出口内径变为 1.4m, 其余与环评 一致	内径变化	
废气 工程	渗滤液处理 站除臭系统	对产生的恶臭气体构筑物 (调节池、厌氧池、综合水 池、污泥池等)均加盖密 闭,恶臭气体采用除臭风机 (设计风量 8000m³/h)收集 后,通过管道送至焚烧炉垃 圾贮坑作为一次风焚烧处 理。	依托一期工程	与环评一致,新增日常停炉时通 过喷洒植物液除臭剂进行除臭, 并增加一套活性炭应急除臭作为 备用废气处理系统,于焚烧炉停 炉期间使用	新时物行加应等等 的 物质 为 , 所见, 所见, 所见, 所见, 所见, 所见, 所见, 所见, 所见, 所	

续表 3.3-1

	米山	环评阶段3	建设内容	並 京 京 は に は に は に は に は に に に に に に に に に に に に に	亦弘佳四	夕沪
	类别	一期工程	二期工程	实际建设内容情况	变动情况	备注
	焚烧厂房恶 臭防治措施	抽气、活性炭除臭、阻隔帘 幕及其他密闭措施	依托一期工程	抽气、阻隔帘幕、喷洒除臭剂等 除臭措施	无变动	
	飞灰仓	一台灰库顶设脉冲除尘器, 型号 DMC126m ² N=1.5kW	一台灰库顶设除尘器,型 号 DMC126m ² N=1.5kW	与环评一致	无变动	
	石灰仓	石灰仓顶设脉冲除尘器	依托一期工程	与环评一致	无变动	
	水泥仓	水泥仓顶设脉冲除尘器	依托一期工程	与环评一致	无变动	
废气 工程	飞灰稳定化 固化车间	对车间采取封闭措施,车间 内各储仓均设脉冲除尘器, 并定期采用植物液喷淋除 臭,少量废气通过车间排风 扇排放到外环境,飞灰设计 处理规模 15t/d	依托一期工程	对车间采取封闭措施,车间内各 储仓均设脉冲除尘器,并增加一 套喷淋废气处理设施	增加一套喷淋 废气处理设施	
	餐厨垃圾预 处理车间恶 臭	采用"负压收集臭气+酸洗涤+码 两级化学图		与环评一致	无变动	
废水 工程	渗滤液处理 站	渗滤液处理站设计规模 150t/d,采用"UBF 厌氧 +MBR+NF+RO(预留)"	构筑物依托一期工程,新增 二期工程设备	渗滤液处理站设计规模 200t/d, 采用"UASB 厌氧 +MBR+NF+RO"	设计规模增加 50t/d,根据行业内的成果 例,UBF 厌的, 反应器中的, 反应器基系 以选择的, 以及 以及 以及 以及 以及 以及 以及 以 以 以 以 以 以 以 以 以	

续表 3.3-1

	米山	环评阶段强	建设内容	☆	水斗桂刈	夕沪
	类别	一期工程	二期工程	- 实际建设内容情况	变动情况	备注
废水	初期雨水池	设立一座容积不小于 400	0m³初期雨水收集池。	设立一座容积不小于 510m³ 初期雨水 收集池。	容积增加 110 m ³	
工程	事故应急池	建一座容积 1200m³ 的事故应急 浓度污水 8 天暂存量的要求或 废水的贮存。		建一座容积 1916m³ 的事故应急池	容积增加 716m³	
	炉渣处置	炉渣经排渣机排出,经轮式 装载机,经运渣汽车,运往 上杭县生活垃圾填埋场填埋 处理,外委,另行专项评价	/	炉渣经排渣机排出,经渣吊至运渣汽车,委托福州美佳环保资源开发有限 公司综合利用	装载方式 改变,处 置单位变 化	
固体 处置	飞灰处置	设 1 台 3t/h 双卧轴强力搅拌 机,飞灰仓出灰经飞灰、水 泥、螯合剂固化,混合后的 成型物在厂内短时静停养护 稳定化	依托一期工程	与环评一致	无变动	
	实验室废液 处置	暂存于危废暂存库,并委托 有资质单位处置。	依托一期工程	与环评一致	无变动	
Д	梟声控制	合理布局、安装?	肖声器、隔声等	与环评一致	无变动	
	绿化	绿化面积 13721m²	依托一期工程	与环评一致	无变动	
厂区外道路及污水管 网		进场道路及对外污水管网建 设由市政统一配套,不在环 评评价范围	/	与环评一致	无变动	
E	权水工程	焚烧厂供水水源取自汀江, 两根 DN200 引水管至取水泵 房,经泵加压输送至电厂净 水站。取水泵房设在汀江 旁。不在环评评价范围	/	与环评一致	无变动	

3.3.2 主要设备

项目环评报告中所列的生产设备与此次验收的设备种类及数量主要设备见表 3.3-2。

表 3.3-2 实际主要设备一览表

n	设备名称	型号	环评数量			实际	ない
系统			一期	二期	全厂	数量	备注
垃圾接收	全电子式汽车衡	SCS-50T	2台	/	2台	2台	
及贮存系 统	垃圾吊车	6.3m³、Q=11t、Lk=30.40m	2台(1用 1备)	/	2台(1 用1备)	2台(1 用1备)	
	一次风机	$Q=31170Nm^3/h$, $N=132kW$	1台	1台	2台	0台	设备选型不同
	一次风机1、2#	Q=1534m³/h	0台	0台	0台	4台(2用2 备)	增加4台,设 备选型不同
	一次风机3、4#	Q=30000m ³ /h	0台	0台	0台	4台(2用2 备)	增加4台,设备选型不同
垃圾焚烧 系统	一次风机5#	Q=2900m ³ /h	0台	0台	0台	2台	增加2台,设 备选型不同
からし	二次风机	Q=14000Nm ³ /h、N=75kW	1台	1台	2台	2台	
	炉墙冷却送风机	Q=16000Nm ³ /h、N=30kW	1台	1台	2台	2台	
	炉墙冷却引风机	Q=20280Nm ³ /h、N=22kW	1台	1台	2台	2台	
	螺杆泵	$Q=3.8m^3/h H=1.0MPa N=2.2kW$	2台	/	2台	2台	
	焚烧炉	300t/d	1台	1台	2台	2台	
	挤压脱水机	处理能力: 5-7t/h P:35.5KW	1台	/	1台	1台	
	无轴螺旋输送机	D=500 mm L=11550mm \ D=300mm L=9000mm	2台	/	2台	2台	
餐厨垃圾	卧式离心泵	Q=8~10t/h , H=20m	4台		4台	4台	
处理系统	卧螺式离心机	处理量: Q~5m³/h; 转速: 3000r/min,油脂含油率≥95%	1台	/	1台	1台	
	离心风机	风量: 15000m³/h, 全压: 2500Pa, 功率: 18.5kW, 380V	2台	/	2台	2台	
余热锅 炉系统	余热锅炉	单台最大连续蒸发量 26t/h	1台	1台	2台	2台	
	凝汽式汽轮机	12MW N12-3.82/395 型	1台	/	1台	1台	
	发电机	QF-12-2 z	1台	/	1台	1台	
	电动给水泵	DG36-80*8、DG65-80*8	2台(1用1 备)	1台	3台(2用1 备)	3台(2用1 备)	
汽轮发电 系统	凝结水泵	KZA50/315-37/2	2台(1用 1备)	/	2台(1 用1备)	2台(1 用1备)	
	真空泵	SJ7-DEK4	2台(1用 1备)	/	2台(1 用1备)	2台(1 用1备)	
	定期排污扩容器	DP-2.5 V=2.5m ³	1台	/	1台	1台	
	连续排污扩容器	LP1.5-1	1台	/	1台	1台	
	疏水泵	KCZ40/250-18.5/2	2台(1用 1备)	/	2台(1 用1备)	2台(1 用1备)	
	引风机	/	1台	1台	2台	2台	
	电动双梁桥式起 重机	LH25/5t-16m	1台	/	1台	1台	

续表 3.3-2

	E表 3.3-2		环评数量			かに	
系统	设备名称	型号	一期	二期	全厂	实际 数量	备注
	振动输送机	单台10t/h L=2.5m	1台	1台	2台	2台	
除渣系统	液压水封水 冷却出渣机	单台3.125t/h	1台	1台	2台	2台	
	电动双梁抓斗 起重机	3m³、Q=10t、Lk=7.3m	1台	/	1台	1台	
	反应塔下输送机	YD200Q=2t/hN=2.2kW v=0.066m/s	1台	/	1台	1台	
	除尘器下刮板输 送机	YD250Q=8t/hN=2.2kW v=0.066m/s	2台	/	2台	2台	
飞灰系	公用刮板输送机	YD430Q=15t/hN=5.5kW v=0.066m/s	2台	/	2台	2台	
统	斗式提升机	DT30Q=15t/hN=7.5kWv=0.12m/s	2台(1用 1备)	/	2台(1 用1备)	2台(1 用1备)	
	成型机	/	1台	/	1台	1台	
	搅拌主机	N=2×18.5kW	1台	/	1台	1台	
	螺旋计量给料机	N=2×11kW	2台	/	2台	2台	
压缩空 气系统	螺杆式空压机	Q=30m ³ /minP=0.78MPan=2900rpm N=185kW	2台	1台	3台	3台	
	冷冻干燥机	Q=40m ³ /min、N=5.5kW	2台	/	2台	2台	
	螺旋格栅机	$Q=10m^3/h; P=1.5kW$	1台	/	1台	1台	
	多曲面搅拌机	D=2m, P=5.5kW	2台	/	2台	2台	
	除臭引风机	Q=5700m ³ /h; P=7.5kW	1台	/	1台	1台	
	厌氧池进水泵	Q=10m ³ /h; H=20m, P=3kW	3台(2用 1备)	/	3台(2 用1备)	3台(2 用1备)	
	厌氧循环泵	Q=143m ³ /h; H=16m, P=11kw	2台	/	2台	2台	
	沉淀污泥回流泵	Q=15 ³ /h; H=16m, P=1.5kw	1台	/	1台	1台	
	MBR进水泵	Q=6.5m ³ /h; H=15m, P=3kw	2台(1用 1备)	/	2台(1 用1备)	2台(1 用1备)	
	潜水搅拌器	P=5.5kW,直径620mm、 P=2.2kW,直径320mm	2台	/	2台	4台	数量增加2 台,新增工 艺
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	冷却污泥泵	Q=200m ³ /h; H=12.5m, P=15kW	1台	/	1台	2台	数量增加1 台,新增工 艺
渗滤液处 理系统	冷却水泵	Q=200m ³ /h; H=12.5m, P=15kW	1台	/	1台	2台	数量增加1 台,新增工 艺
	射流循环泵	Q=400m ³ /h; H=12.5m, P=22kW、Q=143m ³ /h; H=16m, P=11kw	4台	/	4台	5台	数量增加1 台,新增工 艺
	回流泵	Q=80m ³ /h; H=15m, P=7.5kW	1台	/	1台	4台	数量增加3 台,新增工 艺
	超滤进水泵	Q=85m ³ /h; H=33m, P=11kW	2台(1用1备)	/	2台(1 用1备)	2台(1 用1备)	
	罗茨鼓风机	Q=1320m ³ /h; P=37kW	3台	/	3台	4台	数量增加1 台,新增工 艺
	纳滤原水泵	Q=10m ³ /h, H=25.5m, Pn=1.1kW	1台	/	1台	2台	数量增加1 台,新增工 艺

续表 3.3-2

	(AC 5.5 <u>a</u>						
系统	设备名称	#I 🗆	环评数量			实际	A V
		型号	一期	二期	全厂	数量	备注
	纳滤高压泵	Q=10m ³ /h, H=163m, Pn=7.5kW	1台	/	1台	1台	
	NF循环泵	Q=36m ³ /h, H=40m, P=5.5kW	2台	/	2台	2台	
渗滤液处 理系统	反渗透进水泵	Q=10m ³ /h, H=25.5m, P=1.1k	/	/	/	1台	数量增加1 台,新增工 艺
	反渗透循环泵	Q=25-55m ³ /h, H=23-40m, P=5.5kw	/	/	/	1台	数量增加1 台,新增工 艺
	冷却塔	Q=1500m ³ /h	2台	/	2台	2台	
供水系统	循环水泵	$Q=1200m^3/h$, $H=22m$, $N=120kW$	2台	1台	3台	3台	
六 八水丸	工业水泵	Q=45m ³ /hH=0.35MpaN=11kW	3台(2用 1备)	/	3台 (2 用1备)	3台(2 用1备)	
在线监测	焚烧烟气在线 监测装置	监测项目: SO ₂ 、烟尘、氮氧化物、烟气含氧量、CO、HCl、烟气量、烟气温度等。	1套	1套	2套	2套	
	渗滤液站在线 监测装置	监测项目:流量、pH、COD、氨 氮	1套	/	1套	0套	生产废水未 排放,故未 安装

由于生产废水未排放,故渗滤液处理站出口在线监测装置未安装,一次风机设备选型不同,新型设备在在焚烧工段细分多个一次风机机位,故一次风机数量由2台增加至10台(4台备用),但总风量基本一致,项目新增RO系统、UBF变更为UASB导致设备数量增加,造成项目设备变动,不会导致项目污染物发生变化。

3.4 主要原辅材料及燃料

本项目主要原辅材料的消耗情况见表 3.4-1,年工作天数 333 天。由于项目现有生活垃圾、餐厨垃圾量不足以满足环保验收需求,为推进项目环保验收顺利进行,项目于垃圾坑中囤积满足环保验收至少 4 天的处置量后,启动环保验收工作,并根据验收期间原辅料消耗量及结合项目日常运行消耗量推算整年消耗量。

表 3.4-1 主要原辅材料一览表

原辅料名称	规格	环评中消耗量	实际消耗量	环评中贮存方 式与贮存量	实际贮存方式 与贮存量	备注
生活垃圾	/	20.0 万 t/a	20.0 万 t/a	/	/	
餐厨垃圾	/	1.0 万 t/a	1.0 万 t/a	/	/	
柴油	0#轻柴油	120t/a	130t/a	贮罐 (1×30m³)	贮罐 (1×30m³)	
消石灰	85%	2568t/a	2400t/a	钢制储仓 (80m³)	钢制储仓 (80m³)	

续表 3.4-1

原辅料名称	规格	环评中消耗量	实际消耗量	环评中贮存 方式与贮存 量	实际贮存方 式与贮存量	备注
活性炭	0.150mm	90t/a	85t/a	钢制储仓 (1m³)	钢制储仓 (10m³)	储仓增大至 10m³
螯合剂	重金属稳定剂	100t/a	140t/a	钢制储仓 (4×1m³)	钢制储仓 (4×1m³)	
水泥	/	1000t/a	800t/a	钢制储仓 (1m³)	钢制储仓 (30m³)	储仓增大至 30m³
尿素	25%	194t/a	/	贮仓 (40m³)	/	改为氨水
氨水	20%	/	240t/a	/	贮罐 (30m³)	代替尿素
PNCR 脱硝剂	HSR 脱硝剂(防水型)	/	60t/a	/	袋装(50kg/ 袋,10t)	新增
液碱	30%	14t/a	/	贮罐 (6m³)	/	改为片碱
片碱	98%	/	6t/a	/	袋装 (1t)	代替液碱
盐酸	32%	14t/a	15t/a	贮罐 (6m³)	贮罐 (6m³)	
次氯酸钠	8%	0.28t/a	0.3t/a	贮罐 (1m³)	贮罐 (1m³)	
汽机润滑油	/	6t/a	5t/a	桶装	桶装(200L/ 桶)	
水处理剂	PAC、PAM 等	135t/a	140t/a	袋装(10t)	袋装(10t)	
布袋	/	600 条/a	1000 条/a	/	/	

本项目由于采用新型螯合剂,故水泥用量相应减少,螯合剂用量增加;项目盐酸、氨水为确保处理工艺的稳定运行,故对应用量增加。液碱(30%)使用片碱(98%)代替,使用量及储存量较环评减少。尿素使用氨水代替,贮存量较环评中尿素减少 10m³,活性炭仓容积较原环评增加,但活性炭为项目焚烧废气环保设施中使用,水泥仓容积较原环评增加,但水泥为项目飞灰螯合使用,均不属于生产、处置或储存能力增大 30%及以上的重大变动中情形,不属于重大变动。

由于焚烧废气新增 PNCR 脱硝工序,故对应增加 PNCR 脱硝剂,由于 PNCR 反应产物为氮气、CO₂ 和 H₂O 等无害气体,未新增污染物。

3.5 水源及水平衡

本项目水源为江水和市政自来水,根据建设单位提供信息,项目水平衡见图 3.5-1。

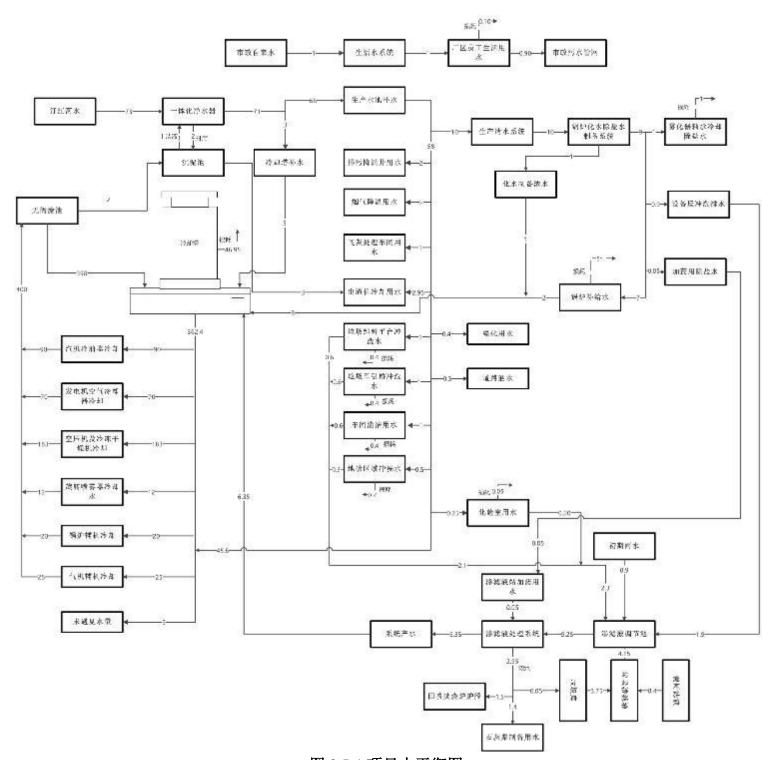


图 3.5-1 项目水平衡图

3.6 生产工艺

3.6.1 生产工艺流程简介

本项目建设内容为 2 条 300t/d 垃圾焚烧生产线、1 台 12MW 凝汽式汽轮发电机组及建设 1 条 30t/d 餐厨垃圾生产线,生产工艺主要包括垃圾接受和贮存、垃圾焚烧系统、余热利用系统及其配套设施。

(1) 垃圾接受供应系统:

垃圾车从出入口进入厂区,经计量磅站称重后进入垃圾倾卸平台,卸入垃圾储坑。垃圾进入储坑后,由垃圾起重机上的垃圾液压抓斗将垃圾送入焚烧炉的进料斗,通过液压推料器将垃圾送入垃圾焚烧炉。

垃圾储坑上方设有抽气系统,垃圾贮坑内臭气作为一次风送入焚烧炉焚烧, 使垃圾贮坑保持负压状态,垃圾储坑保持负压状态;在垃圾储坑上侧设有气体 收集口,非正常工况时储坑垃圾产生的恶臭气体通过此收集口送至活性炭应急 除臭设施处理;并喷洒除臭剂,垃圾中渗出的污水通过贮坑底部渗滤液池收集, 收集后经管道泵入渗滤液处理站处理。

计量磅站

计量磅站:包括管理室、等待称量的车辆缓冲区、自动计量的承重系统、摄像监视系统等设施设备。

卸料平台

垃圾卸料大厅: 垃圾卸料大厅建在室内, 垃圾车经过称重后,按指定的路线和信号 灯,通过引道驶向垃圾垃圾卸料大厅的卸 料平台卸料。垃圾车按指令倒车至指定的 卸料台,此时垃圾池的卸料门自动开启, 垃圾倒入坑内。

垃圾卸料大厅为密闭式布置,卸料区 为室内布置了气幕机,防止臭气外逸。卸 料门数量为4个,均为日常垃圾卸料门。

卸料平台气幕

垃圾储坑

垃圾储坑: 长 40.5m, 宽 24m, 卸料口地上 标高 7.0m, 地下部分-3.0m, 总有效容积 13600m3,可贮存垃圾约 5440t。

垃圾池内设有垃圾渗滤液收集系统, 渗滤液从垃圾池排入渗滤液收集池。

非正常工况废气收集口:非正常工况时, 垃圾储坑中产生的废气通过收集口送至臭 气净化装置 (活性炭过滤) 处理, 处理后 通过风机排入环境。

垃圾进料操作室:操作室内位于垃圾储坑 西侧,配备2台半自动控制垃圾双梁抓 斗,用于垃圾的给料、堆垛、移料和混 料。

封闭式车辆进料通道

封闭式车辆进料通道:

垃圾运输车辆经称重后, 通过本通道前往 卸料大厅, 通道内为钢筋结构并布设有钢 材墙体, 防止雨水洒落。并且缓冲卸料大 厅可能外溢的恶臭气体

(2) 垃圾焚烧系统:

项目设置 2 台垃圾焚烧系统,由炉前垃圾给料系统、垃圾焚烧炉、燃烧空 气系统、启动点火与辅助燃烧系统、除渣系统 5 部分组成。抓斗将垃圾送至焚 烧炉的给料斗,经给料溜槽,给料器把垃圾推到顺推三段跌落式(多级液压式) 机械炉排上进行干燥、燃烧、燃烬及冷却,垃圾在炉排上的停留时间约为 1.5~ 2.5 小时。炉排面下部设置一次风室,供应垃圾燃烧所需的空气并对炉排片进行 冷却; 二次风通过炉膛前后拱的喷嘴射入炉内, 燃烧产生的烟气完全保证燃烧

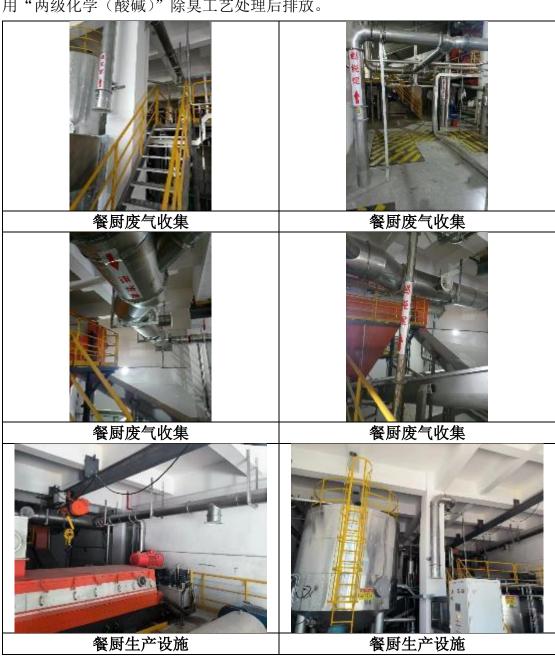
室内维持850°C以上的停留时间不少于2秒,焚烧产生的烟气进入余热锅炉进行余热利用。垃圾在炉排上通过干燥、燃烧和燃烬三个区域,垃圾中的可燃份已完全燃烧,灰渣落入出渣机,出渣机起水封和冷却渣作用。垃圾燃烧产生的高温烟气经余热锅炉冷却后进入烟气净化系统。每台焚烧炉配一套烟气净化系统,采用"SNCR脱硝+PNCR脱硝+旋转喷雾反应塔+干粉喷射+碱液喷射系统脱酸+活性炭喷射+布袋除尘器"工艺,烟气经烟气净化系统处理达标后,通过引风机送至100m烟囱排放至大气。

PNCR 脱硝: PNCR 高分子脱硝技术是一种新兴的处理废气中氮氧化物 (NO_x)的技术。它采用聚核配合物和树脂等高分子材料,通过化学吸附和还原反应,将氮氧化物转化为不活性氮气和水蒸气,在减少氮氧化物排放。

通过专用高分子脱硝气力输送装置和安装在炉膛上的高分子硝剂专用喷枪,将高分子脱硝剂均匀喷入温度约 850-1100°C的垃圾焚烧炉膛内,使其完全裂解气化和扩散后,使还原剂与炉膛内的高温烟气充分混合,并与烟气中的氮氧化物发生还原脱硝反应,脱硝率可达到 50-85%。化学反应方程式如下:

NOx+高分子脱硝剂→N₂+M

高分子脱硝剂:高分子有机多胺类化合物脱硝剂。


M:脱硝过程中形成的还原产物,如 CO_2 和 H_2O 等无害气体。技术协议见附件 20。

3.6.2 餐厨垃圾处理工艺

餐厨垃圾预处理工艺为"接料装置缓存+固液分离+三相分离+油脂回收"。

该系统工艺为餐厨废弃物处置项目协同处理工艺,流程具有更简单、更可 靠、低投资、低能耗、高油脂回收率等特点。

餐厨垃圾经过前端收运系统,经密闭运输车运至餐厨垃圾资源化利用项目 所在地,经地磅称重后进入餐厨垃圾卸料平台,运输车通过车载卸料系统将餐 厨垃圾卸入接料装置,在接料装置底部和物料提升螺旋设置滤液孔,在餐厨垃 圾输送过程中同步实现餐厨垃圾的初步固液相分离;通过接料装置底部设置的 仓底物料输送螺旋将物料输送至后续物料固液分离提升螺旋,进行外部输送的 同时进行二次固液分离,提高物料固液分离效果。其中液体部分进入餐厨垃圾 处理车间的 1#废液收集池,通过 1#池输送泵,通过汽轮机做功完剩余的乏汽用 于加热及提供蒸汽,加热罐及蒸汽混合器进行升温至 80°C左右,进入卧式三相离心机进行油脂回收。卧式三相离心机产生的油脂进入油脂沉降罐,油脂通过齿轮油泵送至油脂储罐进行暂存,定期外卖。卧式三相离心机分离出的水流至2#废液收集池,通过2#池输送泵输送至污水站进行处理。卧式三相离心机产生的残渣通过无轴螺旋输送机,输送进垃圾库混合生活垃圾一起进行焚烧处理。在油脂储罐及加热罐设置废气收集,在车间设置无组织废气收集管,与油脂储罐及加热罐废气一同收集至送至焚烧炉垃圾贮坑作为一次风焚烧处理,应急采用"两级化学(酸碱)"除臭工艺处理后排放。

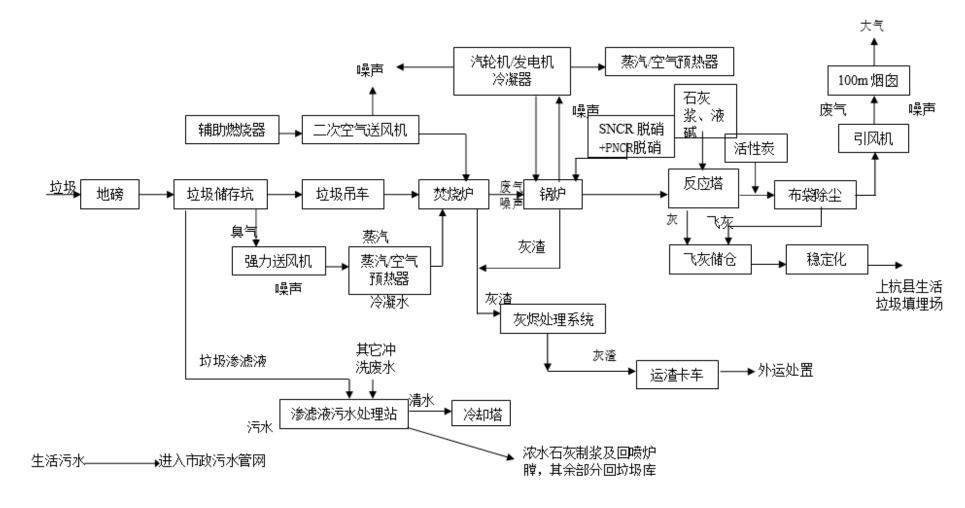


图 3.6-1 生产工艺及产污环节示意图

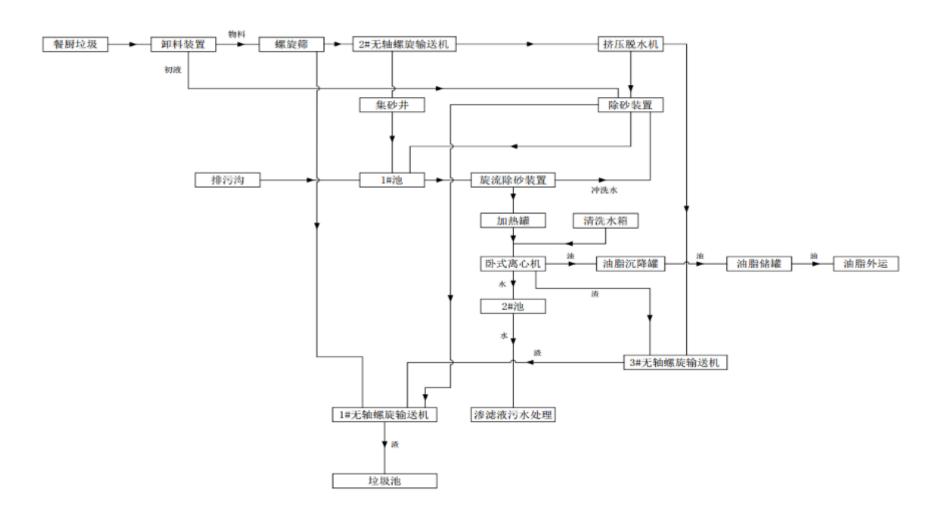


图 3.6-2 餐厨垃圾生产工艺及产污环节示意图

3.7 项目变动情况

表 3.7-1 项目变动情况分析一览表

变动内容	判定条件	环评及批复建设情况	实际建设情况	变动内容	是否为重大 变动
性质	1.建设项目开发、使用功能发生 变化的	城市建设基础设施,属垃圾资源利用 及环境保护工程	城市建设基础设施,属垃圾资源利用 及环境保护工程	建设项目开发、使用 功能未发生变化的	否
	2.生产、处置或储存能力增大 30%及以上的	主要建设规模为 600t/d, 设 2 条 300t/d 垃圾焚烧生产线,配 1×12MW 凝汽机 组,13600m ³ 垃圾贮坑,渗滤液收集池 60m ³ ,渗滤液调节池 1200m ³	主要建设规模为 600t/d, 设 2 条 300t/d 垃圾焚烧生产线,配 1×12MW 凝汽机组,13600m³垃圾贮坑,渗滤液收集池60m³,渗滤液调节池 1200m³	生产、处置或储存能 力未增大	否
	3.生产、处置或储存能力增大, 导致废水第一类污染物排放量增 加的	/	/	生产、处置或储存能 力未增大,未导致废 水第一类污染物排放 量增加的	否
规模	4.位于环境质量不达标区的建设项目生产、处置或储存能力增大,导致相应污染物排放量增加的(细颗粒物不达标区,相应污染物为二氧化硫、氮氧化物、可吸入颗粒物、挥发性有机物;臭氧不达标区,相应污染物为氮氧化物、挥发性有机物;其他大气、水污染物因子不达标区,相应污染物为超标污染因子);位于达标区的建设项目生产、处置或储存能力增大,导致污染物排放量增加10%及以上的。			项目不位于环境质量 不达标区。建设项目 生产、处置或储存能 力未增大,未导致相 应污染物排放量增加	否
地点	5.重新选址;在原厂址附近调整 (包括总平面布置变化)导致环	焚烧发电厂生产区位于厂区偏西北 部,主厂房设在中央地带,焚烧发电	事故应急池位置调整至主厂房南侧; 固化飞灰养护棚、冷却塔、工业水池	平面布置中,将事故 应急池位置调整至主	否

变动内容	判定条件	环评及批复建设情况	实际建设情况	变动内容	是否为重大 变动
	境防护距离范围变化且新增敏感点的。	厂房座东,卸料大厅朝西。自西向东依次布置卸料大厅、垃圾池及给料平台、焚烧炉间、烟气净化间、烟囱等。汽机房、主控及安环楼与焚烧发电厂房平行布置,10kV出线走廊朝南。化水车间、空压站、维修车间等设在卸料大厅下方。烟囱、飞灰迎理站均设在主厂房东侧。冷却塔、绿处理站均设在上区南部,并设健体及下区南郊、海岭及工业水池设在厂区南南;综合外公楼设在厂区南部,并设健体及休闲场地;餐厨垃圾处理车间布置于厂区东侧,与渗滤液处理站相邻,车间南侧设硬地作为回车空间;	调整至主厂房北侧,餐厨垃圾处理间 位置调整至主厂房内西侧;其他建筑 位置基本不变。	厂房南侧; 固化飞灰 养护棚、冷整至主厂型 水水池调整至至主厂处理 间位置调项项目之间 的西置变化未导致产 所,可置变化未导致的,项目 200m 范围内无敏 感点目标,变动未新增敏感点	
生产工艺	6.新增产品品种或生产工艺(含主要生产装置、设备及配套设施)、主要原辅材料、燃料变化,导致以下情形之一:(1)新增排放污染物种类的(毒性、挥发性降低的除外);(2)位于环境质量不达标区的建设项目相应污染物排放量增加的;(3)废水第一类污染物排放量增加的;(4)其他污染物排放量增加10%及以上的。	原有辅料中使用尿素、液碱(30%)	尿素使用氨水替代,液碱(30%)使用 片碱(98%)替代,新增 PNCR 工 艺,对应新增 PNCR 脱硝剂,PNCR 反 应产物为氮气、CO ₂ 和 H ₂ O 等无害气 体。	尿療(30%)替代, 減(98%)替代,对 碱(98%)替代,对 碱(98%)替代,对剂 啊 PNCR 工艺,硝剂,列 PNCR 反应和 H ₂ O 等 气、CO ₂ 和 H ₂ O 等要 气、CM ₂ 其料之产。 等相材化,未新增艺、不生物种化,未产置。 不生设施,不一等,以增,并不是一个。 、一、 、一、 、一、 、一、 、一、 、一、 、一、 、一	否

变动内容	判定条件	环评及批复建设情况	实际建设情况	变动内容	是否为重大 变动
				建设项目相应污染物排放量增加的;(3)废水第一类污染物排放量增加的;(4)其他污染物排放量增加10%及以上的。	
	7.物料运输、装卸、贮存方式变 化,导致大气污染物无组织排放 量增加10%及以上的。	/	/	物料运输、装卸、贮存方式未发生变化,未导致大气污染物无组织排放量增加 10%及以上的	否
环境保护措施	8.废气、废水污染防治措施变化,导致第6条中所列情形之一(废气无组织排放改为有组织排放、污染防治措施强化或改进的除外)或大气污染物无组织排放量增加10%及以上的	(1) 渗滤液处理站设置集气装置,对产生的恶臭气体构筑物(调节池、厌氧池、综合水池、污泥池等)均加盖密闭,恶臭气体采用除臭风机(设计风量 8000m³/h)收集后,通过管道送至焚烧炉垃圾贮坑作为一次风焚烧处理。 (2) 餐厨垃圾处理车间恶臭采用密闭、负压,"两级化学"除臭工艺; (3) 垃圾运输车辆采用专用密闭式垃圾运输车辆; (4) 垃圾贮坑应尽量封闭,垃圾贮坑采取自动快速启闭的卸料门,卸料门处于常闭状态,只在卸料时开放; (5) 垃圾贮坑侧渗滤液收集池气体均要引入垃圾贮坑,由一次风机抽吸送焚烧炉焚烧; (6) 垃圾贮坑密闭,用风机抽臭气送入焚烧炉焚烧、保持贮坑负压;	渗滤液处理站设置集气装置,对产生的恶臭气体构筑物(调节池、厌氧池、综合水池、污泥池等)均加盖密闭,恶臭气体采用除臭风机收集后,通过管道送至焚烧炉垃圾贮坑作为一次风焚烧处理,并设置一套活性炭除臭作为备用废气处理设施。餐厨垃圾处理车间恶臭采用密闭、负压,日常提供通过管道送至焚烧炉垃圾贮坑作为一次风焚烧处理,应急采用"两级化学"除臭工艺;其余与环评要求相符	餐厨垃圾处理车间恶 臭去向改变,原环评 要求环保设施作为备 用设施使用,渗滤液 处理站废气新增备用 废气处理设施,不导 致第6条情形发生	否
		垃圾焚烧炉单独安装 1 套运行工况在 线监测。 (2) 采取"SNCR 脱硝+旋转喷雾反应	每台焚烧炉配套 1 套烟气净化系统, 处理后的烟气采用 1 根 100m 高的烟囱 (集束烟囱)排放。烟气净化设施概	新增 PNCR 脱硝+干粉 喷射+碱液喷射系统脱 酸烟气净化工艺,不	否

变动内容	判定条件	环评及批复建设情况	实际建设情况	变动内容	是否为重大 变动
		塔+活性炭喷射+布袋除尘器"串联的烟气净化工艺,并安装烟气在线监测装置,对烟气排放量、烟气温度、烟气含氧量、烟尘、SO2、氮氧化物、CO、HCl等实行连续自动监测;烟囱高度 100m。 (3) 每套烟气净化系统设置活性炭消耗在线自动计量。	况如下: 采取"SNCR脱硝+PNCR脱硝+旋转喷雾反应塔+干粉喷射+碱液喷射系统脱酸+活性炭喷射+布袋除尘器"的烟气净化工艺。 各配置一套烟气连续在线监测装置,自动监测、记录焚烧烟气排放情况。 监测项目包括:CO、颗粒物、SO2、 NOx、HCl、炉膛内焚烧温度、烟气含氧量、烟气量、烟气温度。	导致第6条情形发生	
		(1)配套建设渗滤液处理站("预处理段+生化段"设计规模 150t/d,采用"UBF 厌氧+MBR+NF+RO(预留)"处理工艺; (2)安装渗滤液收集、排放管网。 (3)排污口规范化设置,安装在线装置。 (4)浓缩液回喷到焚烧炉进行焚烧处置。	(1)配套建设渗滤液处理站("预处理段+生化段"设计规模 200t/d,采用"UASB 厌氧+MBR+NF+RO"处理工艺; (2)渗滤液处理站经管道收集至渗滤液处理站处理后清水用于循环水池,浓水用于石灰制浆、回喷炉膛及垃圾库; (3)由于渗滤液未排放,故未设置排放口及在线装置。	根据行业内的成熟案例,UBF 厌氧反应器中的填料易堵塞,因此选择运行更稳定的UASB 厌氧反应器,渗滤液处理站处理能力增加,渗滤液处理站药留 RO 已建设,渗滤液处理站排放去向改变,不导致第6条情形发生	否
	9.新增废水直接排放口;废水由 间接排放改为直接排放;废水直 接排放口位置变化,导致不利环 境影响加重的。	/	/	未新增废水直接排放 口;生产废水未排放	否
	10.新增废气主要排放口(废气无组织排放改为有组织排放的除外;主要排放口排气筒高度降低10%及以上的	焚烧炉废气经 100m 烟囱排放	焚烧炉废气经 100m 烟囱排放	未新增废气主要排放 口;主要排放口排气 筒高度未降低	否
	11.噪声、土壤或地下水污染 防治措施变化,导致不利环境影 响加重的。	主要机械设备底座安装减振装置,风机、水泵等安装安装隔声罩、风机和锅炉排气等主要排气口安装消声器。 主要产噪车间墙体安装隔声、吸声材	主要机械设备底座安装减振装置,风 机、水泵等安装安装隔声罩、风机等 主要排气口安装消声器。主要产噪车 间墙体安装隔声、吸声材料	噪声污染防治措施未 变化	否

变动内容	判定条件	环评及批复建设情况	实际建设情况	变动内容	是否为重大 变动
		料 (1) 渗滤液处理站和涉及收集、储存"污水、污泥"的池、罐、构筑物、输送污水的水沟、输送污水管道的水沟内壁均应进行防渗水处理。污水管道穿越道路时,应加高强度套管。 (2) 防渗处理工程必须严格按相关规范要求设计、施工。 (3) 对生活垃圾焚烧厂区按要求进行防渗,生活垃圾焚烧厂区及下游共设3个监测井。	根据项目土壤污染状况调查报告,地下水背景点 BD1(厂区东北侧山地)和渗滤液处理站地下水监测点 D2(渗滤液处理站东南侧)未能采集到地下水样品,故仅在生活垃圾焚烧厂区内下游设 2 个监测井。其余于环评一致	地下水监测井数量减 少1个,未导致不利 环境影响加重的。	否
	12.固体废物利用处置方式由委托 外单位利用处置改为自行利用处 置的(自行利用处置设施单独开 展环境影响评价的除外); 固体废 物自行处置方式变化,导致不利 环境影响加重的。	严格落实固废污染防控措施。炉渣运至上杭县生活垃圾填埋场填埋;活性炭废包装袋、餐厨垃圾处理后的固体渣料、渗滤液处理站污泥、生活垃圾、含油抹布、劳保用品等送入焚烧炉内焚烧处理;除尘器废布袋、废离子交换树脂、废机油、废岩棉、事故除臭系统产生的废活性炭等危险废物应委托有资质单位处置;飞灰经固化稳定化处理,符合《生活垃圾填埋场污染控制标准》(GB 16889)要求后定期送至上杭县生活垃圾填埋场单独分区填埋。	按规范设置固体废物分类暂存场所,并采取有效的防渗漏、防扬尘措施。 项目炉渣运至福州美佳环保资源开发 有限公司进行资源化利用,飞灰在厂内固化稳定化处理达标后,运至上杭县生活垃圾填埋场单独分区填埋,生产过程产生的生活垃圾、活性炭废包装滤液处理站污泥、生活垃圾、含料、参滤液处理站污泥、生活垃圾、营解上、营、发展,大量、大量、大量、大量、大量、大量、大量、大量、大量、大量、大量、大量、大量、大	炉渣去向改变,但固 体废物利用处置方式 未改变,未导致不利 环境影响加重的。	否
	13.事故废水暂存能力或拦截设施 变化,导致环境风险防范能力弱 化或降低的。	①本项目产生风险物品的各场所、垃圾贮坑抽风机处应设置在线监测、监控设施,除现场报警外,声、光报警信号应接入主厂房中控室,设置24小时人员值守。 ②产生甲烷等可燃气体气体场所,电气、照明等应采用防爆型产品,区域内的工艺设备、管道均应采取防静	建一座 1916m³ 事故应急池。已编制突发环境应急预案。并向向当地主管部门(龙岩市上杭生态环境局)备案(备案号 350823-2023-020-M)	事故废水暂存能力增加,不会导致环境风险防范能力弱化或降低的。	否

变动内容	判定条件	环评及批复建设情况	实际建设情况	变动内容	是否为重大 变动
		电、接地措施; ③贮放酸碱化学品区应设置围堰,围堰内容积不小于贮罐贮存量。 ④完善《突发环境事件应急预案》,并定期组织职工进行应急救援预案演练。 ⑤建一座 1200m³事故应急池。			

小结

综上,对照《污染影响类建设项目重大变动清单(试行)》,本项目建设性质、生产规模、地点、生产工艺、环境保护措施和环评与补充说明相比基本一致,不存在重大变动。

4 主要污染源、污染物及治理措施

4.1 废水

本项目废水主要为生产废水及生活污水。

4.1.1 生产废水

(1) 垃圾渗滤液、餐厨渗滤液

垃圾倒入储坑内后,垃圾外在水份及分子间水份经堆压、发酵逐渐渗滤至 垃圾储坑底部,产生大量的渗滤液。垃圾渗滤液经管道收集至渗滤液处理站处 理后,清水用于冷却塔,浓水用于石灰制浆、回喷炉膛及垃圾库。

(2) 冲洗废水

项目冲洗污水主要包括垃圾卸料区(含卸料大厅及运输道路、地磅区)和车辆车间冲洗水等高浓度有机废水。经管道收集至渗滤液处理站处理后,清水用于冷却塔,浓水用于石灰制浆、回喷炉膛及垃圾库。

(3) 除盐水系统排水

除盐水制备系统产生的浓水作为冷却水使用,反冲洗水排至渗滤液处理站 处处理。

(4) 锅炉排水

锅炉排水经降温处理后进入冷却塔作为冷却水使用。

渗滤液处理站处理工艺: UASB 厌氧+ MBR+NF+RO。

图 4.1-1 渗滤液处理工艺图

★废水监测点位

渗滤液处理站处理废水回用说明:

由于项目冷却塔每天补充水量较大,为了项目经济效益,将渗滤液处理站废水处理至《城市污水再生利用工业用水水质》(GB/T 19923-2005)表 1 中敞开式循环冷却水补水水质要求,清水回用于冷却塔,浓水用于石灰制浆、回喷炉膛及垃圾库。故取消项目渗滤液处理站废水排放口,根据项目化水污水管理制

度,渗滤液处理站处理后废水每天化验,达《城市污水再生利用工业用水水质》 (GB/T 19923-2005)表 1 中敞开式循环冷却水补水水质要求后回用于循环冷却水 系统补水,化验结果结果超出标准限值,打回垃圾库,不予回用;连续一周均 无法达标时,及时联系罐车运往其他污水厂协调处理。(见附件 18)。

4.1.2 生活污水

本项目生活污水经化粪池处理后经独立管道排入市政污水管网。 雨水及废水排放口基本情况见表 4.1-1~表 4.1-2。

表 4.1-1 雨水排放口基本情况一览表

序	排放口口口名			排放 排放 排放 排放 排放		排放规	间歇 排放		纳自然水体 信息	汇入受纳自然水 体处地理坐标		其 他
号 	编号	称	经度	纬度	去向	律	时段	名称	受纳水体 功能目标	经度	纬度	信息
1	DW002	雨水 排放 口	116° 26′ 55.00″	25° 2′ 28.00″	直进江河湖库水境接入江、、等环境	间放放流稳无律不冲排排间不且规但于型放	下雨时排放	汀江	II类	116° 26′ 30.98″	25° 2′ 22.99″	

序	序 排放口	排放口	排放口地	也理坐标	排放去向	排放规律	间歇排放	受纳污水厂 信息	其他
号	编号	名称	经度	纬度	JII/MAT 3	以去问 排放效律	时段	名称	信息
1	DW001	生活废 水排放 口	116° 26′ 24.00″	25° 3′ 00.00″	进入城市污水处理厂	间断排放,排放期 间流量不稳定,但 有周期性规律	不确定	上杭县佳波污水处理厂	

表 4.1-2 生活废水水排放口基本情况一览表

4.2 废气

4.2.1 污染源及主要污染物

(1) 有组织

- ①焚烧烟气:焚烧炉垃圾焚烧后排放的废气,主要污染物包括:烟尘、SO₂、HCl、NO₂、CO、Pb、Cd、Hg、二噁英等。
- ②恶臭:渗滤液收集、处理,垃圾储坑、餐厨垃圾产生恶臭,主要污染物为:氨、硫化氢。

(2) 无组织

无组织主要污染物包括: 硫化氢、氨、颗粒物等。

4.2.2 环保措施

(1) 烟气净化系统

焚烧炉燃烧垃圾时产生的烟气是垃圾焚烧发电厂的主要大气污染源。垃圾 焚烧烟气中含有多种大气污染物,主要包括烟尘、酸性气体、金属化合物(重 金属)、一氧化碳、未完全燃烧的碳氢化合物及微量有机化合物等,种类和含量 的多寡取决于垃圾的成分和焚烧炉内的燃烧情况。

本项目 2 台焚烧炉对应烟气净化处理系统均采用"SNCR 脱硝+PNCR 脱硝+旋转喷雾反应塔+干粉喷射+碱液喷射系统脱酸+活性炭喷射+布袋除尘器"烟气净化处理工艺,处理后废气分别通过各自 100m 烟道,合并于 1 根集束烟囱排放。

本系统包括石灰浆制备系统、喷雾反应系统、活性炭喷射系统、布袋除尘器系统、飞灰输送存储系统及引风机等部分组成。

100m 集束烟囱

布袋除尘器

(2) 恶臭防治措施

①垃圾贮坑除臭

垃圾坑是整个发电厂最大的臭气散发源,是除臭的重点控制区域。垃圾储坑是一个大空间密闭结构,供存储垃圾用,恶臭污染源主要是由垃圾产生的异味,其主要成分为硫化氢、氨等。

焚烧炉正常运行时,垃圾坑内有机物发酵产生污浊空气。为使污浊空气不外逸,垃圾坑设计为封闭式。含有臭气的空气被焚烧炉一次风装置从垃圾坑上部的吸风口吸出,使垃圾坑内形成负压,作为燃烧空气从炉排底部的渣斗送入焚烧炉,在炉内臭气污染物被燃烧、氧化、分解。同时在垃圾储坑内安装压力监控系统,保证焚烧炉和余热锅炉在运行时保持负压禁止正压防止臭气外逸。

②垃圾渗滤液收集池除臭

渗滤液收集池为密闭结构,其内部的恶臭气体通过管道连接到垃圾池,与 垃圾池中的恶臭气体一并作为一次进风燃烧处理。并设置一套活性炭吸附作为 备用废气处理设施;厌氧池设置火炬焚烧装置作为日常产气安全处置措施。

③餐厨垃圾处理车间

餐厨垃圾在处理过程中自身发酵会产生恶臭废气,其主要污染物为氨和硫化氢。餐厨垃圾处理车间恶臭采用密闭、负压,日常提供通过管道送至焚烧炉垃圾贮坑作为一次风焚烧处理,应急采用"两级化学(酸碱)"除臭工艺。

④卸料大厅

卸料大厅为封闭式;未进行作业的卸料门为关闭状态,卸料大厅处于微负 压状态。抽至垃圾贮坑作为一次风焚烧处理

⑤应急除臭

在垃圾焚烧炉停炉检修时,为防止垃圾产生的硫化氢、氨等臭气在空气中凝聚外溢,日常停炉时通过喷洒植物液除臭剂进行除臭,利用植物液除臭剂与臭味因子接触后瞬间分解臭味分子和产生臭味的各种有机物,将其转化为二氧化碳和水以及微生物细胞成分,从而达到去除臭味的目的。并设置一套活性炭应急除臭装置。(除臭剂技术说明书见附件 17)。

(3) 粉尘防治措施

- ①飞灰仓废气:飞灰仓通过筒仓配套的布袋除尘处理后经排气口排放;
- ②水泥仓废气: 水泥仓通过筒仓配套的布袋除尘处理后经排气口排放;
- ③活性炭仓废气:活性炭仓通过筒仓配套的布袋除尘处理后经排气口排放;
- ④石灰仓废气: 活性炭仓通过筒仓配套的布袋除尘处理后经排气口排放;
- ⑤飞灰暂存库废气:飞灰暂存库废气经收集后经喷淋设施处理后由排气筒排放。

项目喷淋设施均采用自动控制,并附有报警设施,对喷淋液酸碱度进行监控。

位置	处理设施	高度	备注
1#焚烧炉排气筒	SNCR 脱硝+PNCR 脱硝+旋转喷雾 反应塔+干粉喷射+碱液喷射系统 脱酸+活性炭喷射+布袋除尘器	100	
2#焚烧炉排气筒	SNCR 脱硝+PNCR 脱硝+旋转喷雾 反应塔+干粉喷射+碱液喷射系统 脱酸+活性炭喷射+布袋除尘器	100	
飞灰仓废气排气筒	布袋除尘	21	
石灰仓废气排气筒 1	布袋除尘	15	
石灰仓废气排气筒 2	布袋除尘	18	
活性炭仓废气排气筒	布袋除尘	15	
水泥仓废气排气筒	布袋除尘	15	
飞灰暂存库处理设施	喷淋	10	新增处理设施
渗滤液处理站废气处理 设施	活性炭吸附	15	备用设施
餐厨垃圾事故处理设施	酸碱喷淋	45	备用设施
应急除臭处理设施	活性炭吸附	15	备用设施

表 4.2.2-1 项目废气处理设施及高度一览表

4.3 噪声

4.3.1 污染源

垃圾焚烧处理厂噪音源主要有以下几种:

①各种机械运转时产生的噪音

如:风机、水泵、空气压缩机、汽轮发电机等设备,噪音具有持续性。

②一些热力设备的排汽

锅炉生炉放空管或超压时安全阀放空管对空排汽,定期排污扩容器排污时的对空排汽时产生的噪音。

③交通噪声

车辆行使、尤以加速或上坡时产生的噪声。

4.3.2 环保措施

对噪声防治采用综合治理的方式,首先从声源上加以控制,然后采用隔声、消声、吸声及减振等控制措施。选用符合国家噪声标准的设备:对汽轮发电机,在隔热罩内衬吸音板;大型风机及高压汽排汽口装设消音器;大型设备采用独立基础,减轻共振引起的噪声;使工作人员与强噪声源隔离。对允许密封的设备加以密闭,并加通风排风用消音器;在厂区总平面布置上尽量做到高噪声设备、车间与生产办公区分离,并考虑绿化,降低厂区噪声;集中控制室采用双道门、双层窗,选用吸声性能好的墙面材料等。噪声防治措施见表 4.3-1。

设备隔声

设备减震

表 4.3-1 噪声防治措施一览表

	10 = 7K 10 (H) (H) (H)
名称	治理措施
选型和安装	(1)选择低噪声设备; (2)锅炉、发电机房内、空压机房、水泵房壁衬隔声材料; (3)蒸汽放空管及减压阀设消音器,并严格禁止夜间排汽; (4)机炉集中控制室内,门窗处设置隔声装置; (5)烟道与风机接口处,采用软性接头和保温及加强筋; (6)二次风机(再循环烟气风机)等设备设置消声器; (7)冲管时须装设消声器。
管理	(1) 厂方对运输车辆加强管理和维护,保持车辆有良好车况; (2) 厂界设置绿化带。

4.4 固体废物

本项目产生的固体废物分一般工业固废和危险固体废物。

本项目新建危险废物仓库,危废仓库的位置位于主厂房北侧,面积为 60m²。 并建有飞灰养护间面积 360m²。

4.4.1 一般工业固体废物

本项目一般固体废物包括炉渣及生活垃圾等,一般工业固体废物产生及处置情况见表 4.4.1-1。

(1) 炉渣

焚烧炉渣由炉排尾部落入湿式除渣机,属于一般工业废物,收集后由福州 美佳环保资源开发有限公司处置。

(2) 生活垃圾

职工日常生活产生的生活垃圾,经垃圾桶收集后,由本项目作为原料焚烧 处理。

(3) 渗滤液处理站污泥

本项目垃圾渗滤液处理站运行过程中产生污泥,进入焚烧炉焚烧处理。

(4) 餐厨垃圾处理后固体渣料

这些固体渣料通过提升输送机输送至生活垃圾贮坑中,与生活垃圾混合后 一起送入焚烧炉焚烧处理。

序号	名称	来源	产生量 (吨/年)	处置措施
1	炉渣	焚烧炉尾渣	50000	福州美佳环保资源开发有限公司处置
2	生活垃圾	职工日常生活	23.7	
3	渗滤液处理站 污泥	渗滤液处理站	1800	本项目作为原料焚烧处理
4	餐厨垃圾处理 后固体渣料	餐厨垃圾处理	6000	

表 4.4.1-1 一般固体废物产生及处置情况一览表

4.4.2 危险固体废物

厂区内除飞灰外的危险废物包括①烟气处理系统收集的飞灰;②布袋除尘器更换的破损布袋;③废催化剂;④废机油;⑤废活性炭等,暂存于主厂房北侧的危险废物贮存间,为防止危险废物泄漏,厂区根据《危险废物贮存污染控制标准》(GB 18597-2023)的要求,对危险废物的贮存进行管理,管理措施包括:

(1) 危险废物间门口设置警示标识,注明本项目危险废物类别毒性等相关信息。

- (2) 根据危险废物的不同种类,对本项目危险废物进行分类管理。
- (3) 危废间地面做好防渗措施。
- (4) 厂区内建立专门的危险废物管理制度,明确了危险废物管理的责任人。
- (5) 危废暂存间设置排气系统引至垃圾料坑一同处置。

危险固体废物处置产生及处置情况见表 4.4.2-1。

(1) 飞灰

本项目飞灰为烟气净化过程中产生的飞灰,主要成分为 SiO₂、Al₂O₃、 Fe₂O₃等化合物以及少量重金属元素成分,飞灰暂存于灰罐中,飞灰螯合固化稳 定后,送配套的填埋场填埋。

(2) 布袋除尘器更换的破损布袋

本项目运行至今未对布袋除尘器布袋进行更换,待废布袋产生后委托处置。

(3) 废离子交换树脂

废离子交换树脂主要来源于化水车间产生,本项目运行至今未更换离子交 换树脂,待产生后委托处置。

(4) 废机油

废机油主要来源于设备修磨、机修过程,本项目运行至今未更换机油,待 废机油产生后委托进行处置。

(5) 废活性炭

废活性炭主要来源于应急垃圾储坑除臭净化设施等废气处理设施,本项目运行至今未更换活性炭,待废活性炭产生后委托处置。

(6) 废岩棉

本项目蒸汽管道定期更换废岩棉,待产生后委托进行处置。

(7) 废膜组件

项目渗滤液处理设施定期更换膜组件交由原厂回收处理。

(8) 废弃的含油抹布, 劳保用品

本项目劳动人员机修过程会产生少量废弃的含油抹布,劳保用品,混入生活垃圾,同生活垃圾进入焚烧炉焚烧处理。

(9) 实验室废液

化验室会产生少量的实验室废液,待产生后,交由有资质单位接收处理。

项目暂未产生的危险废物产生量按照环评进行统计,其余产生数量根据项目日常运营产生量统计。

表 4.4.2-1 危险废物产生及处置情况一览表

序号	名称	来源	产生量 (吨/年)	分类	代码	处置措施
1	飞灰	烟气净化设施	6100	HW18	772-002-18	固化稳定后,送配套的飞 灰填埋场填埋
2	废布袋	烟气净化设施	22.4	HW49	900-041-49	
3	废活性炭	烟气净化设施	2	HW49	900-039-49	
4	废机油	修磨、机修	2	HW08	900-214-08	
5	废离子交换树 脂	化水车间	3	HW13	900-015-13	一
6	废岩棉	蒸汽管网	1	HW36	900-032-336	
7	实验室废液	化验室	0.1	HW49	900-047-49	
8	废弃的含油抹 布,劳保用品	机修	0.5	HW49	900-041-49	进入焚烧炉焚烧处理
9	废膜组件	渗滤液处理站	0.04	/	/	交由原厂回收处理

4.5 其他环境保护设施

4.5.1 环境风险防范设施

本项目建立完善的安全生产管理机构及制度,厂区设置危险源监控装置,安装摄像头对柴油罐区及其他危险源进行监控,安装在线烟气排放连续监测系统,实时监控烟气的各项指标。对厂区各个危险源监控设施进行定期的检测、检验,并做好检测、检验记录。渗滤液处理站设置事故废水池有效容积 1916m³,并设有 510m³ 初期雨水收集池,在初期雨水收集池安装切换阀门。

2023年10月30日建设单位根据《突发环境事件应急预案管理暂行办法》等相关文件编制了《上杭县生活垃圾焚烧发电项目厂突发环境事件应急预案》,已经向当地主管部门(龙岩市上杭生态环境局)备案(备案号350823-2023-020-M)。

已在焚烧车间、危废暂存库、在线监测平台等处安装监控,全厂消防实行 联动控制,24小时有专人值守,以保证厂区的消防安全。

项目氨水罐区设有 150m³ 围堰,氨水罐体 30m³, 餐厨油脂罐设有 20m³ 围堰, 餐厨油脂罐体 20m³。

厂区大门处在线数据公示板

初期雨水收集池

事故应急池

餐厨油脂罐

4.5.2 规范化排污口、检测设施及在线监测装置

项目排污口均已设置规范化排污口和排污口标识,并对废气排气筒安装了(二氧化硫、氮氧化物、烟尘、一氧化碳、含氧量、氯化氢、炉膛温度、DCS温度、湿度、烟气压力、流量)CEMS-2000B FT 型烟气连续监测系统设备具体参数见表 4.5.2-1~4.5.2-2。项目自行进行在线监测设施的运维工作。

2024年2月福建安格思安全环保技术有限公司在线监测装置固定污染源烟气排放连续监测系统验收工作。验收情况见附件13。

本项目在亲清平台上注册信息,上传公司各类相关证件及合法合规材料; 危险废物的接收、转移、贮存、处置均在福建省固体废物环境监管平台上进行。

焚烧炉废气排放安装在线自动监测设备,数据实时上传至福建省污染源自 动监控系统平台及重点排污单位自动监控与基础数据库系统,门卫处安装焚烧 废气信息公开屏幕,焚烧数据实时更新显示。

表 4.5.2-1 焚烧炉在线参数一览表 1

安装位置			1#焚烧炉			
仪器名称	设备型号	出厂编号	制造商	量程	测量方法	
温度	TPT-100	753P228000D		0~400°C	Pt100/电容、 绝压法	
流速		,,,,,,		0~40m/s	皮托管	
湿度				0~40%	湿度极限电 流法	
二氧化硫	FT-100	473P2360002	聚光科技(杭 州)股份有限 公司	0~200mg/m ³	傅立叶变换 红外光谱法	
氮氧化物				0~230mg/m ³	傅立叶变换 红外光谱法	
一氧化碳				0~200mg/m ³	傅立叶变换 红外光谱法	
氯化氢				0~120mg/m ³	傅立叶变换 红外光谱法	
含氧量	HMS-200	Y22080233		0~25%	氧化锆法	
颗粒物	Synspec PM	456P2290012	Synspec	0~60mg/m ³	激光散射法	
氨	FT-100	473P2390010	聚光科技(杭 州)股份有限 公司	0~50mg/m ³	傅立叶变换 红外光谱法	

表 4.5.2-2 焚烧炉在线参数一览表 2

安装位置			2#焚烧炉		
仪器名称	设备型号	出厂编号	制造商	量程	测量方法
温度	TPT-100	753P228000C		0~400°C	Pt100/电容、 绝压法
流速		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$0\sim40\text{m/s}$	皮托管
湿度				0~40%	湿度极限电 流法
二氧化硫	FT-100	473P2360001	聚光科技(杭州)股份有限 60001 公司	$0\sim200$ mg/m ³	傅立叶变换 红外光谱法
氮氧化物				$0\sim230\text{mg/m}^3$	傅立叶变换 红外光谱法
一氧化碳				$0\sim200$ mg/m ³	傅立叶变换 红外光谱法
氯化氢				0~120mg/m ³	傅立叶变换 红外光谱法
含氧量	HMS-200	Y22090178		0~25%	氧化锆法
颗粒物	Synspec PM	456P2290012	Synspec	0~60mg/m ³	激光散射法
氨	FT-100	473P2360001	聚光科技(杭 州)股份有限 公司	0~50mg/m ³	傅立叶变换 红外光谱法

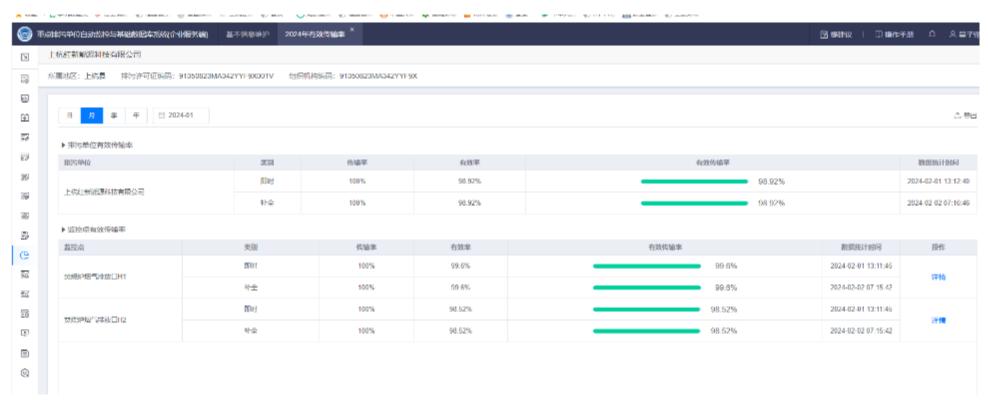


图 4.5-1 重点排污单位自动监控与基础数据库系统数据传输率图

图 4.5-2 福建省污染源自动监控系统平台完成率图

4.5.3 厂区绿化

本项目为新建项目,企业按设计要求,在主、辅厂房四周、道路两侧及成

块空地上留出绿化用地,现已采用点、线、面的绿化方式,大面积铺植草坪和 种上树木、花草等。

4.5.4 自行检测

本项目已委托福建省永正生态科技有限公司开展自行检测,检测期间未见数据异常,检测合同见附件 21,检测信息定期发布于福建省污染源监测信息综合发布平台。

4.5.5 地下水井建设及厂区防渗情况

本项目垃圾储坑,污水处理站等重点区域均有做防渗工程,设置 2 口地下水监测井。根据《上杭红新能源科技有限公司土壤和地下水自行监测方案及自行监测报告》,为了防止项目污染物渗漏对地下水的污染影响,建设单位要严格落实本次评价提出的污染分区防渗措施。根据《环境影响评价技术导则 地下水环境》(HJ610-2016),地下水污染防渗分区划分为重点防渗区、一般防渗区、简单防渗区,厂区污染防治分区划分情况见表 4.5.5-1。对不同等级污染防治区采取相应等级的防渗方案。

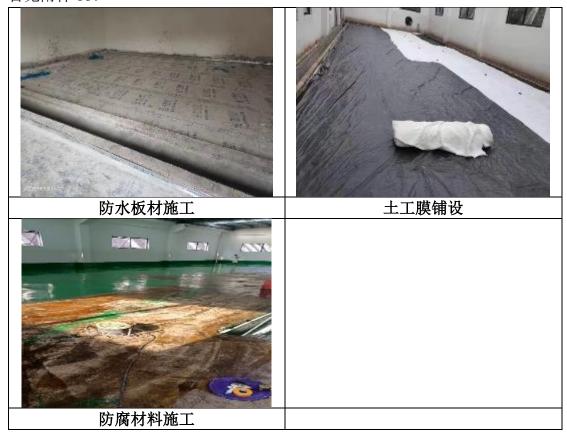

序 防治区 防渗技术要求 污染物类型 装置及设施名称 防渗区域 号 分区 卸料大厅 地面 新建渗滤液处理站 各池底部及池壁防渗 废水输送管道 铺设管沟管沟内侧防渗 重金属、持 等效黏土防渗 垃圾池 底部及四周防渗 重点防 久性有机物 1 层 Mb≥6.0m, 渗区 污染物 $K \le 1 \times 10^{-7} \text{cm/s}$ 飞灰固化处理车间 底部防渗 飞灰固化养护棚 底部防渗 餐厨垃圾处理间 底部及四周防渗 危废暂存间 底部防渗 重金属、持 等效黏土防渗 应急事故池 底部及四周防渗 一般防 2 久性有机物 层 Mb≥1.5m, 渗区 污染物 $K \le 1 \times 10^{-7} \text{cm/s}$ 初期雨水池 底部及四周防渗

表 4.5.5-1 厂区污染防治分区划分表

续表 4.5.5-1

序 号	防治区 分区	污染物类型	防渗技术要求	装置及设施名称	防渗区域
				烟气净化间	底部防渗
2.	一般防	重金属、持 久性有机物	等效黏土防渗 层 Mb≥1.5m, K≤1×10 ⁻⁷ cm/s	焚烧炉区	底部防渗
2	渗区	污染物		冷却塔	底部防渗
				汽机间	底部防渗
		简单防	一般地面硬化	主控楼	地面硬化
3	简单防 渗区			综合楼	地面硬化
				综合水泵房	地面硬化

项目施工监理阶段。对重点部位防渗及防渗材料均进行验收,施工监理报告见附件 16。

上层有和	点位编	布点位置		* F	
点位名称	号	位置描述	经纬度	布点位置确定理由	
地下水背景点	BD1	厂区东北侧山 地	E: 116°27'3.71" N: 25° 2'34.40"	位处排气筒最小风频率风向上风 处、地下水上游处。且地势较高不 会受到可能存在污染区域的土壤中 上层滞留水扩散影响。作为本次土 壤自行监测的背景点。	
主厂房地下水 监测点	D1	主厂房南侧	E: 116°26'55.72" N: 25° 2'29.57"	位处主厂房旁,且处于初期雨水和 地下水扩散方向,用于监测重点单 元2是否出现泄漏造成地下水污 染。	
餐厨垃圾处理 间及渗沥液处 理站地下水监 测点	D2	渗滤液处理站 东南侧	E: 116°26'59.45" N: 25° 2'29.41"	位处餐厨垃圾处理间及渗沥液处理站旁,且处于初期雨水和地下水扩散方向,用于监测重点单元3是否出现泄漏造成地下水污染。	
初期雨水池地 下水监测点	D3	初期雨水西南侧	E: 116°26'55.07" N: 25° 2'28.12"	位处初期雨水池旁,且处于初期雨水和地下水扩散方向,用于监测初期雨水池是否出现泄漏造成地下水污染。	

其中地下水背景点 BD1 (厂区东北侧山地) 和渗滤液处理站地下水监测点 D2 (渗滤液处理站东南侧) 未能采集到地下水样品。故厂区仅有 2 口地下水成 井。

4.6 环保设施投资及"三同时"落实情况

4.6.1 环保设施投资

本项目环评中工程总投资 37946.43 万元,其中环保投资 3690 万元,占总投资额 9.72%;实际工程总投资 39114.38 万元,其中环保投资为 4207 万元,占总投资额 10.76%。本项目的环保投资金额见表 4.6.1-1~4.6.1-3。

表 4.6.1-1 施工期环保设施投资一览表

	措施内容	环保投资(万元)
施工污水、生活污水处理措施	建设临时厕所及1套一体化生活污水处理装置,经处理后送排放;施工废水设置收集沉淀池处理。	30
施工生活垃圾处置措施	施工生活垃圾要设置一定数量的垃圾筒,集中 收集堆放,定期清运至垃圾处理场处理。	10
施工大气污染控制措施	(1)防尘、抑尘对策措施; (2)焊接烟尘控制措施; (3)施工机械、施工车辆燃油尾气控制措施。	20
施工噪声控制措施	选用新型的低噪声施工机械设备;合理安排施工作业时间,避免在夜间施工;运输车辆应尽可能减少鸣号,特别是经过附近村庄时,同时尽量减少夜间运输车辆作业时间。	10
水土保持措施	落实《水土保持方案》中保护措施,做好施工场地截洪、排水工作,保证截洪、排水系统畅通。对含泥砂的雨水应设置泥砂沉淀池进行处理后排放等。	30
合计		100

表 4.6.1-2 一期工程环保设施投资一览表

		文 4.0.1-	,	T
序号	措施	数量	规模及内容	投资估算(元)
	废气防治设施			
1	生活垃圾焚烧 炉烟气	1 套	(1) 垃圾焚烧炉单独安装 1 套运行工况在线监测,监测项目至少包括焚烧炉燃烧温度、炉膛压力、烟气出口氧气含量和一氧化碳含量。(2) 采取"SNCR 脱硝+PNCR 脱硝+旋转喷雾反应塔+干粉喷射+碱液喷射系统脱酸+活性炭喷射+布袋除尘器"串联的烟气净化工艺,并安装烟气在线监测装置,对烟气排放量、烟气温度烟气含氧量、烟尘、SO2、氮氧化物、CO、HC1等实行连续自动监测。 (3) 建一座高度 100m,出口内径 D=1.4m 钢筋烟囱。	1100
2	恶臭污染物	/	(1) 渗滤液处理站设置集气装置,对产生的 恶臭气体构筑物(调节池、厌氧池、综合水池、污泥池等)均加盖密闭,恶臭气体采用除臭风机(设计风量 8000m³/h)收集后,通过管道送至焚烧炉垃圾贮坑作为一次风焚烧处理。餐厨 45m 高的排气筒排放。 (2) 垃圾运输车辆采用专用密闭式垃圾运输车辆; (3) 垃圾贮坑应尽量封闭,垃圾贮坑采取自动快速启闭的卸料门,卸料门处于常闭状态,只在卸料时开放; (4) 垃圾贮坑侧渗滤液收集池气体均要引入垃圾贮坑,由一次风机抽吸送焚烧炉焚烧; (5) 厂区内定期对垃圾接收大厅及其周边、厂内垃圾运输通道等处喷洒植物提取液除臭剂,灭菌、除臭。 (6) 加强厂内道路、地面和运输车辆的清扫,定期冲洗,保持干净整洁,无垃圾和渗滤液遗洒 (7) 规范操作和管理,对垃圾贮存坑内的垃圾进行搅拌和翻动,不仅使垃圾进炉热值均匀,并且可避免垃圾的厌氧发酵,减少恶臭的产生。	150
3	扬尘	/	工业场地和场外道路设计采取洒水车定时洒水	20
	1/1/工	,	一 <u>工工物程度</u> 例并是明极扩展的相外	20

序号	措施	数量	规模及内容	投资估算(元)
			抑尘,每天2小时洒水1次,加强绿化。	
=	废水防治设施			
1	垃圾渗滤液	1套	(1)新建1座渗滤液处理站,(预处理段+生化段)设计规模150t/d,采用"UASB厌氧+MB)+N)+RO"处理工艺; (2)安装渗滤液收集、排放管网。	800
2	低浓度废水处 理	/	①化学除盐水处理系统排出的离子交换反冲洗水,为间断性排水,水在中和池调整达到pH=6~9后,作为厂区高架桥面、垃圾平台、汽车等冲洗用水。 ②生活污水经厂区内化粪池处理达标后进入市政污水管网。 ③循环冷却塔及净化装置的排污水污染物一般为SS及无机盐类,且污染物的浓度较低,进入回用水池沉淀后,用作除渣冷却、主厂房地面烟气净化间地面、汽机房地面及厂区道路冲洗水。	80
Ξ	地下水防治设 施	/	对生活垃圾焚烧厂区按要求进行防渗,焚烧厂 区共设2个监测井。	300
四四	固体废物处置			
1	炉渣	/	与相关单位签订接收、处理协议	50
2	飞灰	/	飞灰送飞灰处理间,采用"水泥:螯合剂"固化、稳定化处理成固化块,经检测各项指标合格后报当地环保主管部门批准,送东侧的上杭县生活垃圾填埋场填埋。	80
3	危险废物	/	建一座危险废物暂存库,定期送有资质单位集 中处置	87
五	噪声控制	/	主要声源隔声、消声、吸声及减振等措施	120
六	环境风险			
1	应急设施及装 备	/	配备在线检测报警器,消防器材等。	50
2	建立应急预案	/	建设单位应建立环境风险应急预案。	20
3	事故应急池	/	建一座 1916m³ 事故应急池	250
4	初期雨水池	/	建一座 561m³ 初期雨水池	80
七	环境管理及监 测	/	建立环境管理及监测机构,配备监测仪器、按 监测计划开展监测。	50
	合计			3237

表 4.6.1-3 二期工程环保设施投资一览表

序号	措施	数量	规模及内容	投资估算 (元)
_	废气防治设施			
1	生活垃圾焚烧 炉烟气	1 套	(1) 垃圾焚烧炉单独安装 1 套运行工况在线监测,监测项目至少包括焚烧炉燃烧温度、炉膛压力、烟气出口氧气含量和一氧化碳含量。(2) 采取"SNCR 脱硝+PNCR 脱硝+旋转喷雾反应塔+干粉喷射+碱液喷射系统脱酸+活性炭喷射+布袋除尘器"的烟气净化工艺,并安装烟气在线监测装置,对烟气排放量、烟气温度烟气含氧量、烟尘、SO2、氮氧化物、CO、HCl等实行连续自动监测。(3)建一座高度 100m,出口内径 D=1.4m 钢筋烟囱。	770
=	噪声控制	/	主要声源隔声、消声、吸声及减振等措施	50
Ξ	环境风险			/
1	应急设施及装备	/	配备在线检测报警器,消防器材等。	30
2	建立应急预案	/	建设单位应建立环境风险应急预案。	20
	合计			870

5 环境影响报告书主要结论与建议及其审批部门审批决定

5.1 环境影响报告书主要结论与建议

5.1.1 主要结论

上杭县生活垃圾焚烧发电项目建设符合国家产业政策;厂址基本符合《上杭县城市总体规划》(2015-2030年)和相关技术规范要求,具有较好的外部配套条件。项目所在地环境质量现状可达到当地环境功能区规定要求;在建设单位严格执行环保"三同时"制度,严格落实项目《可研报告》和本报告书提出的各项环保措施和风险防范措施,生产运行满足工艺和安全生产要求,达标排放的前提下,本项目建设、运营对周围环境的影响可控制在本地环境功能区允许范围之内,从环保的角度分析,本项目建设是可行的。

5.1.2 验收要求落实情况

环评对运营期环保措施及竣工验收的要求和落实情况见表 5.1-1。

期工程环 项目 一期工程环保对策措施 备注 落实情况 保对策措施 (1) 渗滤液处理站设置 集气装置,对产生的恶 臭气体构筑物(调节 池、厌氧池、综合水 池、污泥池等)均加盖 除餐厨垃圾 密闭,恶臭气体采用除 处理车间 渗滤液处理站设置集气装置,对 臭风机(设计风量 恶臭去向 产生的恶臭气体构筑物(调节 8000m³/h) 收集后,通 改变,原 池、厌氧池、综合水池、污泥池 过管道送至焚烧炉垃圾 环评要求 等)均加盖密闭,恶臭气体采用 环保设施 贮坑作为一次风焚烧处 除臭风机收集后,通过管道送至 理。 依托一期工 作为备用 大气污 焚烧炉垃圾贮坑作为一次风焚烧 (2) 餐厨垃圾处理车间 程已采取的 设施使 染防治 恶臭污染物 处理,并设置一套活性炭除臭作 恶臭采用密闭、负压, 污染防治措 用,渗滤液 措施 为备用废气处理设施。餐厨垃圾 "两级化学"除臭工 处理站废气 施 处理车间恶臭采用密闭、负 艺; 新增备用废 压, 日常提供通过管道送至焚 (3) 垃圾运输车辆采用 气处理设 烧炉垃圾贮坑作为一次风焚烧 施, 己落 专用密闭式垃圾运输车 处理,应急采用"两级化学"除 实,其余与 辆; 臭工艺, 其余与环评要求相符 环评要求相 (4) 垃圾贮坑应尽量封 闭, 垃圾贮坑采取自动 符 快速启闭的卸料门,卸 料门处于常闭状态,只 在卸料时开放; (5) 垃圾贮坑侧渗滤液

表 5.1-1 环评对竣工环保验收要求落实情况一览表

项目	一期工程环保对策措施	二期工程环 保对策措施	落实情况	备注
	收集地坑,由大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大			
焚烧烟气	(1) 1#垃圾焚烧炉单独 安装 1 套运行工况在线 监测。	应塔+活性 炭喷出**的 气净化工 艺烟、一个, 一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、	每台焚烧炉配套 1 套烟气净化系统,处理后的烟气采用 1 根 100m 高的烟囱(集束烟囱)排放。烟气净化设施概况如下:采取"SNCR 脱硝+PNCR 脱硝+ 产物喷射系统脱酸+活性炭喷射+布袋、水水、 100m 高,以下,以下,以下,以下,以下,以下,以下,以下,以下,以下,以下,以下,以下,	新脱喷喷酸工实环符 增硝射射烟艺,评 中++系气,其要 等一种,并不是,并是
飞灰颗粒物	布袋除尘器	布袋除尘器	飞灰仓、水泥仓、活性炭仓、石	己落实

	项目	一期工程环保对策措施	二期工程环 保对策措施	落实情况	备注
	石灰仓、石 灰仓等颗粒 物	布袋除尘器	布袋除尘器	灰仓密闭并设置袋式除尘设备。	
	/	厂内雨污分流,分为高 浓度生产废水系统、低 浓度废水、雨水系统。	厂内雨污分 流,分为高 浓度生产废 水系统、低 浓度废水、 雨水系统。	与环评一致	己落实
水物防油	垃圾渗滤液 等高浓度废 水	(1)配套建设渗滤液处理站("预处理段+生化段"设计规模 150t/d,采用"UBF 厌氧+MBR+NF+RO(预留)"处理工艺;(2)安装渗滤液收集、排放管网。(3)排污口规范化设置,安装在线装置。(4)浓缩液回喷到焚烧炉进行焚烧处置。	依托一期工 程已采取的 污染防治措 施	(1)配套建设渗滤液处理站 ("预处理段+生化段"设计规模 200t/d,采用"UASB 厌氧 +MBR+NF+RO"处理工艺; (2)渗滤液处理站经管道收集 至渗滤液处理站处理后清水用于 循环水池,浓水用于石灰制浆、 回喷炉膛及垃圾库; (3)由于渗滤液未排放,故未 设置排放口及在线装置。	根内案厌器料塞选更U反渗理能加R建液水变排线本余求据的例氧中易,择稳SB器液站力,U设处去,放装落与相行成,反的堵因运定B器液处增预艺,理向未口置实环符业熟U应填 此行的厌,处理 留己渗站改设及,,评业熟F
	低浓度废水处理	(1) 化学除盐水处理系统排出的离子交换反冲洗水,为间断性排水,废水在中和池调整达厂。高架桥面,作为一台。高架桥面,垃圾平台。高架桥面,这是不是有少少。有一个人。这是一个人,这是一个人。这是一个人,这是一个一个人,这是一个一个人,这是一个人,这是一个一个人,这是一个一个一个人,这是一个一个一个一个人,这是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	施	与环评一致	己落实
	初期雨水	建一座 400m³ 初期雨水 收集池	依托一期工 程已采取的 污染防治措	建一座 510m³ 初期雨水收集池	初期雨水收 集池增加 110 m³,已

项目		一期工程环保对策措施	二期工程环 保对策措施	落实情况	备注
			施		落实
	地下水防治措施	(1) 渗滤液处理站和涉及收集、储存"污水、物、输送"的地、罐、构筑物、输送污水的水沟、输送污水管道的渗水处理。污水管道穿透道的水沟内壁。污水管道强度套管。 (2) 防渗处理工程必设加高强度套管。 (2) 防渗处理工程必设计、施工。 (3) 对生活垃圾焚烧厂区按要求进行防渗,生活垃圾焚烧厂区方流,下游共设3个监测井。	依托一期工 程已采取的 污染防治措 施	根据项目土壤污染状况调查报告,地下水背景点 BD1(厂区东北侧山地)和渗滤液处理站地下水监测点 D2(渗滤液处理站东南侧)未能采集到地下水样品。故厂区仅有 2 口地下水成井。其余于环评一致	基本落实
噪声污染防治 措施	焚烧炉、 风机、冷 却塔等主 要设备	主要机械设备底座安装 减振装置,风机、水泵 等安装安装隔声罩、风 机和锅炉排气等主要排 气口安装消声器。主要 产噪车间墙体安装隔 声、吸声材料	主备减风等隔机气气声产体声料要底振机安声和等口器噪安、机安置水安、炉要装主间隔声级装,泵装风排排消要墙材	主要机械设备底座安装减振装 置,风机、水泵等安装安装隔声 罩、风机等主要排气口安装消声 器。主要产噪车间墙体安装隔 声、吸声材料	基本落实
	炉渣	运至上杭县生活垃圾填 埋场填埋处理	运至上杭县 生活垃圾填 埋场填埋处 理	炉渣经排渣机排出,经渣吊至运 渣汽车运输至福州美佳环保资源 开发有限公司综合利用	已落实,处 置单位改变
固体废物	飞灰	①本企业应配备飞灰固化块层出实验及检测的设备和天产量)飞行型的一个大方型的一个大方型的一个大方型,对1300-2007制备的一个大方型,一个大方型,一个大方型,一个大方型,一个大方型,一个大方型,一个大方型,一个大力工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工	①配化验设员(量化HJ/T30种有测测②块项后本备块及备,前)块/T30种实。期质位 灰检标报业灰出测人每天灰照-备进验二委的检 固测合当应固实的 批产固 的行及噁托检 化各格地	本企业对每批飞灰固化物委托有资质第三方检测公司检测。二噁英定期委托有资质的检测单位检测。飞灰固化物经检测各项指标合格后,报环保主管部门批准,送东侧上杭县生活垃圾填埋场飞灰填埋专区填埋。	己落实

项目		一期工程环保对策措施	二期工程环 保对策措施	落实情况	备注
			环保主管部门批准,送 东侧上杭县 生活垃圾填 埋场飞灰填 埋专区填 埋。		
	废弃的含油 抹布、劳保 用品	返回焚烧炉焚烧	返回焚烧炉 焚烧	返回焚烧炉焚烧	己落实
	生活垃圾、 渗滤液处理 站污泥、装 性炭包厨垃 袋、餐厨垃 圾处理后的 固体渣料	收集后进入垃圾池,送 本项目焚烧炉焚烧	收集后进入 垃圾池,送 本项目焚烧 炉焚烧	生活垃圾、渗滤液处理站污泥、 活性炭包装袋、餐厨垃圾处理后 的固体渣料收集后进入垃圾池, 送本项目焚烧炉焚烧	己落实
	废膜组件	厂家回收	厂家回收	厂家回收	己落实
	废离脂 器 成 医 医 医 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图	送有资质单位集中处置	送有资质单 位集中处置	暂未产生,产生后送有资质单位 集中处置,已于福建绿洲固体废 物处置有限公司签订合同	已落实
	固废临时堆放场	固废临时贮存堆放场 所,飞灰固化块养护应 设置围档,并采取防 风、防雨、防渗措施	固废临时贮 存堆放场灰炉 化块弄护点 设置取防 风 次 方 形 、 发 形 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	固废已设置临时贮存堆放场所, 飞灰固化块养护已建设飞灰暂存 库,并采取防风、防雨、防渗措 施	已落实
风险	放防范措施	①本项目产生风险物品的各场所、设置在线现处应设施,从处应设施,从处应设施,从上,产生风险的的人。	依托一期工 程已采取的 风险防范措 施	建一座 1916m³ 事故应急池。已编制突发环境应急预案。并向向当地主管部门(龙岩市上杭生态环境局)备案(备案号 350823-2023-020-M)	事故废水暂 存能力增加 716 m³,已 落实

项目	一期工程环保对策措施	二期工程环 保对策措施	落实情况	备注
	职工进行应急救援预案 演练。 ⑤建一座 1200m³ 事故应 急池。			
活性炭、辅助燃 料、碱液使用情况	对活性炭、辅助燃料、 碱液等的施用量实施计 量。建立消石灰、活性 炭使用消耗台帐;建立 炉渣、飞灰产生、转移 量台帐和飞灰固化块检 测、产生、转移量记 录、台帐。	对辅碱用量石炭台炉产量灰测转录活性燃等实建、用;、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	对活性炭、辅助燃料、碱液等的 施用量实施计量。建立消石灰、 活性炭使用消耗台帐;建立炉 渣、飞灰产生、转移量台帐和飞 灰固化块检测、产生、转移量记 录、台帐。	己落实
绿化	加强厂区绿化,提高绿 地率,沿厂区周边布设 绿化带。	加强厂区绿 化,提高绿 地率,沿厂 区周边布设 绿化带。	厂区绿化,提高绿地率,沿厂区 周边布设绿化带。	己落实
大气环境保护距离	垃圾焚烧厂厂界(征地 红线)外延 300m 范围	沿用一期工 程划定的大 气环境保护 距离	项目厂界外延 300m 范围内,无居住区、医院、学校、行政办公、科研等对大气环境敏感的项目。	己落实
环境管理	委托有资质单位开展环 境监理	委托有资质 单位开展环 境监理	由于环境监理资质取消,故建设 方未开展环境监理	/

5.2 审批部门审批决定

上杭县住房和城乡建设局:

你局提交的《上杭县生活垃圾焚烧发电项目环境影响报告书》(以下简称"报告书")及申请审批的报告收悉。经研究,批复如下:

一、该项目位于龙岩市上杭县临城镇土埔村烂泥坑现有无害化垃圾填埋场西北侧场地,占地 6.4006 公顷,日处理生活垃圾 600t,主要建设 2 台 300t/d 机械排炉,1 台 12MW 凝汽式汽轮发电机组,2 台额定蒸汽 25.8t/h 余热锅炉,同时建设一条 30t/d 餐厨垃圾生产线。主体工程由垃圾接收、贮存与输送系统、焚烧系统、垃圾热能利用系统和餐厨垃圾处理系统组成,配套建设公用工程、储运工程和环保工程。项目分两期实施,其中,一期工程日处理生活垃圾 300t、餐厨垃圾 30t,二期工程新增日处理生活垃圾 300t。本项目主要处理上杭县的生活垃圾和餐厨垃圾。项目总投资 37946.43 万元,其中环保投资 3690 万元。

依据福建省金皇环保科技有限公司编制的报告书结论,该项目符合国家产业政策,选址基本符合上杭县城市总体规划、上杭县土地利用总体规划、上杭县城环境卫生设施专项规划等相关规划要求,并取得了可行性研究报告批复(龙发改审批[2019]45号)和建设项目用地预审意见书(龙自然预[2019]17号)。在严格执行环保"三同时"制度,全面落实报告书提出的各项污染防治措施并加强环境管理的前提下,项目建设对环境的不利影响可得到缓解和控制。因此,我局原则同意报告书中所列建设项目的性质、规模、地点和采取的环境保护措施。

- 二、项目建设和运行过程中,应认真对照环保法律法规规定和报告书内容, 严格执行各项环境管理和污染防治、生态保护、风险防控措施要求,确保投入 到位、建设到位、管理到位。重点做好以下工作:
- (一)项目设计、建设和运行中,应严格按照《生活垃圾焚烧发电建设项目环境准入条件(试行)》及清洁生产要求,选用国内外先进的装置设备和生产工艺,提高资源利用率,降低能耗,物耗和水耗,从源头上减少污染物产生量;采用技术工艺成熟可靠的污染治理设施,确保各项污染物稳定达标排放,清洁生产达到国内先进水平。加强项目周边规划控制,厂界外300m的环境防护距离范围内不得规划建设居民区、学校、医院、行政办公和科研等敏感目标。
- (二)施工期应做好施工废水、扬尘、噪声、固废、水土流失等污染防治,减轻施工期对环境的影响。
- (三)严格落实水污染防控措施。按照"清污分流、雨污分流"原则设计、建设厂区排水系统。初期雨水、冲洗废水、垃圾渗滤液排入新建的渗滤液处理站,采用"预处理+UFB 厌氧+MBR+NF+RO(预留)"处理后排入市政污水管网,纳滤产生的膜浓缩液送入焚烧炉内焚烧处置;化学除盐水处理系统排水、冷却废水及净化装置排污水排入厂区回用水池,用于除渣冷却、主厂房地面、烟气净化间地面、汽机房地面及厂区道路冲洗水,不外排;生活污水经化粪池处理后排入市政污水管网。外排废水水质应符合《污水排入城镇下水道水质标准》(GB/T31962-2015)B级标准和上杭县佳波污水处理厂设计进水水质标准要求,其中重金属应符合《生活垃圾填埋场污染控制标准》(GB 16889-2008)表2中的浓度限值要求。

做好地下水的保护工作,采取严格的分区防渗措施,卸料大厅、渗滤液处

理站、废水输送管道铺设管沟、垃圾池、飞灰固化处理车间、飞灰固化养护棚、 危废暂存间、餐厨垃圾处理间等应满足重点污染防治区相应的防腐防渗要求;合 理设置地下水监控井,落实地下水污染监测计划,制订地下水风险防范措施, 发现问题及时采取相应防治措施,避免对地下水环境造成污染。

(四)严格落实大气污染防控措施。严格控制焚烧炉主要技术性能指标,保证焚烧炉出口烟气有足够的温度、烟气在燃烧室内有足够的停留时间、燃烧过程中适当的湍流和过量的空气,从源头上减少二噁英、氮氧化物等污染物产生。焚烧炉产生的废气经"SNCR 脱硝+旋转喷雾反应塔+活性炭喷射+布袋除尘器"组合工艺处理达标后,通过100m高集束式排气简排放。排放烟气应符合《生活垃圾焚烧污染控制标准》(GB 18485-2014)要求。

粉状物料全部采用密闭储仓储存,其中飞灰、水泥、石灰仓各设置一套脉冲袋式除尘器,净化后的废气通过不低于 15m 高排气筒达标排放,颗粒物排放应符合《大气污染物综合排放标准》(GB16297-1996)要求。

严格控制恶臭气体无组织排放,生活垃圾装卸和贮存设施渗滤液收集和处理设施等应采取密闭负压措施,并确保在运行期和停炉期处于负压状态。正常运行时恶臭气体引入焚烧炉内焚烧处理,停炉检修状态下采用活性炭除臭装置处理后,通过不低于15m高排气筒达标排放。餐厨垃圾处理车间恶臭采用"负压收集+酸洗涤+碱洗涤+正压输送"的两级化学除臭工艺处理后,通过不低于15m高排气筒达标排放。恶臭污染物排放应符合《恶臭污染物排放标准》(GB14554-93)要求。

(五)严格落实噪声污染防控措施。尽量采用低噪声设备,合理布局,对高噪声设备采取隔声、消声、减振等综合降噪措施,加强厂区绿化。厂界噪声应符合《工业企业厂界环境噪声排放标准》(GB 12348-2008)中的2类标准要求。

(六)严格落实固废污染防控措施。炉渣运至上杭县生活垃圾填埋场填埋;活性炭废包装袋、餐厨垃圾处理后的固体渣料、渗滤液处理站污泥、生活垃圾、含油抹布、劳保用品等送入焚烧炉内焚烧处理;除尘器废布袋、废离子交换树脂、废机油、废岩棉、事故除臭系统产生的废活性炭等危险废物应委托有资质单位处置;飞灰经固化稳定化处理,符合《生活垃圾填埋场污染控制标准》(GB 16889)要求后定期送至上杭县生活垃圾填埋场单独分区填埋。危险废物临时贮

存应符合《危险废物贮存污染物控制标准》(GB18597-2001)及其修改单(2013年)要求,一般固应符合《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及其修改单(2013年)要求。

(七)强化环境风险防范和应急管理。落实报告书提出的各项风险防范措施,设立三级防控体系,设置足够容积的事故应急池,确保事故废水得到有效收集并进入事故池。及时编制突发环境事件应急预案并报上杭生态环境局备案,配备应急设施、装备和应急物资,定期开展环境风险应急培训和演练,有效防范和应对环境风险。

(八)落实环境管理措施。配备相应环境管理人员,制定环保规章制度和台账管理制度,加强污染防治设施的管理和维护,确保各项污染物稳定达标排放;落实排污口规范化工作要求,渗滤液处理站主要污染物应设置在线监测系统,每台焚烧炉应设置运行工况在线监测装置和烟气在线监测装置,并与环保部门联网,在厂区周边显著位置设置显示屏,实时公示在线监测数据;严格落实报告书提出的环境监理工作要求;严格落实报告书提出的监测计划,及时跟踪本项目特征污染物对环境的影响,加强恶臭、二噁英监测分析,对与本底值变化明显的要及时查找原因,采取必要措施。主动发布企业环境保护信息,自觉接受社会监督加强宣传与沟通工作,建立畅通的公众参与渠道和平台,及时解决公众反映和担忧的环境问题,满足公众合理的环境保护诉求。

(九)总量控制。根据报告书核算,项目一期工程实施后最大新增 COD 排放量 1.72t/a、 NH_3-N 排放量 0.23t/a、 SO_2 排放量 19.2t/a、 NO_X 排放量 69.12t/a,二期工程实施后全厂最大新增 COD 排放 2.51t/a、 NH_3-N 排放量 0.33t/a、 SO_2 排放量 38.4t/a、 NO_X 排放量 138.24t/a。

三、本报告书经批准后,如工程的性质、规模、地点、生产工艺或防治污染、防止生态破坏的措施发生重大变动的,应重新报批该项目的环评文件。

四、项目污染防治措施必须与主体工程同时设计、同时施工、同时投入使用。项目投产前应及时办理排污许可手续,竣工后应按规定的标准和程序开展竣工环境保护验收。

五、请上杭生态环境局组织开展该项目环境保护"三同时"监督检查,并 负责项目日常环境监管。

5.3 审批部门审批决定落实情况

龙岩市生态环境局批复及落实情况见表 5.3-1。

表 5.3-1 龙岩市生态环境局批复落实情况一览表

表 5.3-1 龙岩市生态环境局批复落实情况一览表			
批复要求	落实情况	备注	
项目设计、建设和运行中,应严格按照《生活垃圾焚烧发电建设项目环境准入条件(试行)》及清洁生产要求,选用国内外先进的装置设备和生产工艺,提高资源利用率,降低能耗,物耗和水耗,从源头上减少污染物产生量;采用技术工艺成熟可靠的污染治理设施,确保各项污染物稳定达标排放,清洁生产达到国内先进水平。加强项目周边规划控制,厂界外 300m 的环境防护距离范围内不得规划建设居民区、学校、医院、行政办公和科研等敏感目标。	项目设计、建设和运行中,严格按照《生活垃圾焚烧发电建设项目环境准入条件(试行)》及清洁生产要求,选用国内外先进的装置设备和生产工艺,提高资源利用率,降低能耗,物耗和水耗,从源头上减少污染物产生量;采用技术工艺成熟可靠的污染治理设施,确保各项污染物稳定达标排放,清洁生产达到国内先进水平。加强项目周边规划控制,厂界外 300m 的环境防护距离范围内未规划建设居民区、学校、医院、行政办公和科研等敏感目标。	基本落实批复要求	
施工期应做好施工废水、扬尘、噪声、固 废、水土流失等污染防治,减轻施工期对 环境的影响。	施工期对施工废水、扬尘、噪声、固废、 水土流失等污染进行防治,减轻施工期对 环境的影响。	基本落实批 复要求	
严格落实水污染防控措施。按照"清污分流、雨污分流"原则设计、建设厂区排水系统。初期雨水、冲洗废水、垃圾渗滤液排入新建的渗滤液处理站,采用"预处理+UFB 厌氧+MBR+NF+RO(预留)"处理后排入市政污水管网,纳滤产生的膜浓缩液送入焚烧炉内焚烧处置;化学除盐水处理系统排水、冷却废水及净化装置排污水排入厂区回用水池,用于除渣冷却、主厂房地面、烟气净化间地面、汽机房地面及厂区道路冲洗水,不外排;生活污水经化粪池处理后排入市政污水管网。外排废水水质应符合《污水排入城镇下水道水质标准》(GB/T 31962-2015)B 级标准和上杭县佳波污水处理厂设计进水水质标准要求,其中重金属应符合《生活垃圾填埋场污染控制标准》(GB/16889/2008)表 2 中的浓度阻值	项目实行雨污分流,新建渗滤液处理站处理规模 200t/d, 采用"UASB 厌氧+MBR+NF+RO"工艺,处理后清水用于循环水池,不外排,纳滤浓水用于回喷炉膛及垃圾库,反渗透浓水用于石灰制浆;除盐水系统排水、锅炉排水:进入循环水池;化学除盐水处理系统排水、冷却废水及净化装置排污水排入厂区回用水池,用于除渣冷却、主厂房地面、烟气净化间地面、汽机房地面及厂区道路冲洗水,不外排;生活污水经化粪池处理后排入市政污水管网。外排废水水质应符合《污水排入城镇下水道水质标准》(GB/T 31962-2015)B级标准和上杭县佳波污水处理厂设计进水水质标准要求。根据项目监理报告,项目采取严格的分区防涂措施。全理设置地下水	根的例氧的塞择定厌器处能渗站已滤排据成,反填,运的氧,理力滤预建液站行熟FB器易此更ASD应滤处加处RO,理向水案厌中堵选稳B应液理,理O渗站改算	
标准》(GB 16889-2008)表 2 中的浓度限值要求。 做好地下水的保护工作,采取严格的分区	取严格的分区防渗措施,合理设置地下水 监控井,落实地下水污染监测计划。	排放去向改 变,其余与 批复一致,	

防渗措施,卸料大厅、渗滤液处理站、废水输送管道铺设管沟、垃圾池、飞灰固化处理车间、飞灰固化养护棚、危废暂存间、餐厨垃圾处理间等应满足重点污染防治区相应的防腐防渗要求;合理设置地下水监控井,落实地下水污染监测计划,制订地下水风险防范措施,发现问题及时采取相应防治措施,避免对地下水环境造成污染。

基本落实批 复要求

严格落实大气污染防控措施。严格控制焚烧炉主要技术性能指标,保证焚烧炉出口烟气有足够的温度、烟气在燃烧室内有足够的停留时间、燃烧过程中适当的湍流和过量的空气,从源头上减少二噁英、氮氧化物等污染物产生。焚烧炉产生的废气经"SNCR 脱硝+旋转喷雾反应塔+活性炭喷射+布袋除尘器"组合工艺处理达标后,通过 100m 高集束式排气简排放。排放烟气应符合《生活垃圾焚烧污染控制标准》(GB 18485-2014)要求。

粉状物料全部采用密闭储仓储存,其中飞灰、水泥、石灰仓各设置一套脉冲袋式除尘器,净化后的废气通过不低于 15m 高排气筒达标排放,颗粒物排放应符合《大气污染物综合排放标准》(GB16297-1996)要求。

严格控制恶臭气体无组织排放,生活垃圾装卸和贮存设施渗滤液收集和处理设施等应采取密闭负压措施,并确保在运行期和停炉期处于负压状态。正常运行时恶臭气体引入焚烧炉内焚烧处理,停炉检修状态下采用活性炭除臭装置处理后,通过不低于 15m 高排气筒达标排放。餐厨垃圾处理车间恶臭采用"负压收集+酸洗涤+碱洗涤+正压输送"的两级化学除臭工艺处理后,通过不低于 15m 高排气筒达标排放。恶臭污染物排放应符合《恶臭污染物排放标准》(GB 14554-93)要求。

焚烧炉采用 SNCR 脱硝+PNCR 脱硝+旋转喷雾反应塔+干粉喷射+碱液喷射系统脱酸+活性炭喷射+布袋除尘器"的烟气净化工艺。组合工艺处理焚烧烟气,烟气经净化处理达标后由烟囱引到 100 米高度排放。焚烧炉烟气排放口安装污染物自动监控装置以及颗粒物、二氧化硫、氮氧化物、一氧化碳和氯化氢等主要污染物排放在线监测装置,焚烧炉内安装运行工况在线监测装置,焚烧炉内安装运行工况在线监测装置,监测指标包括一氧化碳浓度、燃烧温度、含氧量等,监测结果采用电子显示板进行公示并与环保部门和行业主管部门监控中心联网。危险废物不进入焚烧炉进行焚烧处理。

粉状物料全部采用密闭储仓储存,飞灰 仓、水泥仓、活性炭仓、石灰仓密闭并设 置袋式除尘设备。

正常运行时恶臭气体引入焚烧炉内焚烧处

理,停炉检修状态下采用活性炭除臭装置处理后,通过 15m 高排气筒达标排放。渗滤液处理站设置集气装置,对产生的恶臭气体构筑物(调节池、厌氧池、综合水池、污泥池等)均加盖密闭,恶臭气体采用除臭风机收集后,通过管道送至焚烧炉垃圾贮坑作为一次风焚烧处理,并设置一套活性炭除臭作为备用废气处理设施。餐厨垃圾处理车间恶臭采用密闭、负压,日常提供通过管道送至焚烧炉垃圾贮坑作为一次风焚烧处理,应急采用"两级化学"除臭工艺通过 45m 高排气筒达标排放。恶臭污染物排放符合《恶臭污染物排放标

除处臭变要施设渗站备理落餐理去,求作施滤废用设实厨车向环保备用处新气,复垃间改评设用,理增处已要

	准》(GB 14554-93)要求。	
	· · · · · · · · · · · · · · · · · · ·	
	严格落实噪声污染防控措施。尽量采用低	
严格落实噪声污染防控措施。尽量采用低	噪声设备,合理布局,对高噪声设备采取	唱士孙仁士
噪声设备,合理布局,对高噪声设备采取	隔声、消声、减振等综合降噪措施,加强	噪声执行标
隔声、消声、减振等综合降噪措施,加强	厂区绿化。由于项目所在声功能区改变,	准限值改
厂区绿化。厂界噪声应符合《工业企业厂	所在区域为工业用地,厂界噪声符合《工	变。已落实
界环境噪声排放标准》(GB 12348-2008)中	业企业厂界环境噪声排放标准》(GB	批复要求
的 2 类标准要求。	12348-2008)中的 3 类标准要求 (见附件	
亚极花应用应定处理检查特殊。原体是不上	9)。	
严格落实固废污染防控措施。炉渣运至上	按规范设置固体废物分类暂存场所,并采取东兹的险流温。除坏心状态,而是始流	
杭县生活垃圾填埋场填埋;活性炭废包装	取有效的防渗漏、防扬尘措施。项目炉渣	
袋、餐厨垃圾处理后的固体渣料、渗滤液	运至福州美佳环保资源开发有限公司进行	
处理站污泥、生活垃圾、含油抹布、劳保	资源化利用,飞灰在厂内固化稳定化处理	
用品等送入焚烧炉内焚烧处理;除尘器废布	达标后,运至上杭县生活垃圾填埋场单独	
袋、废离子交换树脂、废机油、废岩棉、	分区填埋,生产过程产生的生活垃圾、活	
事故除臭系统产生的废活性炭等危险废物	性炭废包装袋、餐厨垃圾处理后的固体渣	₩ + + + =
应委托有资质单位处置;飞灰经固化稳定化	料、渗滤液处理站污泥、生活垃圾、含油	炉渣去向改
处理,符合《生活垃圾填埋场污染控制标》(CD 16000)	抹布、劳保用品等送至焚烧炉焚烧处理;	变,基本落
准》(GB 16889)要求后定期送至上杭县生活垃圾塘埋火单独小屋塘埋。	除尘器废布袋、废离子交换树脂、废机	实批复要求
活垃圾填埋场单独分区填埋。危险废物临时股东京流外域和	油、废岩棉、事故除臭系统产生的废活性	
时贮存应符合《危险废物贮存污染物控制 标》《CR18507 2001》及其 kg 对 单(2012	炭等危险废物委托福建绿洲固体废物处置 有四八司进行外界。7. 东、均济贮存八别按	
标准》(GB18597-2001)及其修改单(2013年)要求,一般固应符合《一般工业固体废	有限公司进行处置;飞灰、炉渣贮存分别按照《危险废物贮存污染控制标准》	
物贮存、处置场污染控制标准》		
	(GB18597-2023)和《一般工业固体废物贮	
(GB18599-2001)及其修改单(2013年)要求。	存和填埋污染控制标准》(GB 18599-2020) 要求落实。	
	女小伯大。	
书提出的各项风险防范措施,设立三级防		
控体系,设置足够容积的事故应急池,确	建一座 1916m³ 事故应急池。已编制突发环	
保事故废水得到有效收集并进入事故池。	境应急预案。并向向当地主管部门(龙岩	基本落实批
及时编制突发环境事件应急预案并报上杭	市上杭生态环境局)备案(备案号	复要求
生态环境局备案,配备应急设施、装备和	350823-2023-020-M).	22.11
应急物资,定期开展环境风险应急培训和	2020 020 12/0	
演练,有效防范和应对环境风险。		
落实环境管理措施。配备相应环境管理人	已建立专门安环部,制定环保规章制度和	渗滤液处理
员,制定环保规章制度和台账管理制度,	台账管理制度,加强污染防治设施的管理	站由于未外
加强污染防治设施的管理和维护,确保各	和维护,确保各项污染物稳定达标排放;落	排故未设置
项污染物稳定达标排放;落实排污口规范化	实排污口规范化工作要求,渗滤液处理站	在线监测系
工作要求,渗滤液处理站主要污染物应设	由于未外排故未设置在线监测系统,每台	统,由于环
置在线监测系统,每台焚烧炉应设置运行	焚烧炉设置运行工况在线监测装置和烟气	境监理资质

工况在线监测装置和烟气在线监测装置,并与环保部门联网,在厂区周边显著位置设置显示屏,实时公示在线监测数据;严格落实报告书提出的环境监理工作要求;严格落实报告书提出的监测计划,及时跟踪本项目特征污染物对环境的影响,加强恶臭、二噁英监测分析,对与本底值变化明显的要及时查找原因,采取必要措施。主动发布企业环境保护信息,自觉接受社会监督加强宣传与沟通工作,建立畅通的公众参与渠道和平台,及时解决公众反映和担忧的环境问题,满足公众合理的环境保护诉求。

在线监测装置,并与环保部门联网。由于 环境监理资质取消,故未开展环境监理工 作;己开展项目自行检测,并公示结果 取消,故未 开展环境监 理工作,基 本落实批复 要求

总量控制。根据报告书核算,项目一期工程实施后最大新增 COD 排放量 1.72t/a、 NH₃-N排放量 0.23t/a、 SO₂排放量 19.2t/a、 NOX 排放量 69.12t/a,二期工程实施后全厂最大新增 COD 排放 2.51t/a、 NH₃-N 排放量 0.33t/a、 SO₂ 排放量 38.4t/a、 NO_x 排放量 138.24t/a。

总量控制。根据验收检测结果并换算成满 负荷情况下,项目全厂 SO₂ 的排放量为 3.45吨/年,NOx的排放量为63.9吨/年。颗 粒物的排放量为 0.936 吨/年。项目生产废 水未外排,故无需对其排放总量进行核 算。

已落实批复 要求

6 验收执行标准

6.1 废水

本项目生活污水执行《污水综合排放标准》(GB 8978-1996)三级排放标准,其中氨氮执行《污水排入城镇下水道水质标准》(GB/T 31962-2015)表 1 中 B 级标准,具体标准限值见表 6.1-1。生产废水执行《城市污水再生利用工业用水水质》(GB/T 19923-2005)表 1 中敞开式循环冷却水补水水质要求。

污染物排放 监控位置	监测项目	单位	三级标准	执行标准
	pH 值	无量纲	6~9	
	COD	mg/L	500	
ムオスしん	BOD ₅	mg/L	300	《污水综合排放标准》 (GB 8978-1996)
生活污水出 口	SS	mg/L	400	
	动植物油类	mg/L	100	
	氨氮	mg/L	45	《污水排入城镇下水道水 质标准》(GB/T 31962- 2015)表 1 中 B 级标准
	总磷	mg/L	1	
	BOD5	mg/L	10	
生产废水	色度	倍	30	《城市污水再生利用工业 田水水馬》(GD/T 1992)
	COD	mg/L	60	用水水质》(GB/T 19923- 2005)
	氨氮	mg/L	10	
	粪大肠菌群	个/L	2000	

表 6.1-1 生产废水排放执行标准

6.2 废气

根据项目环评及批复,本项目"焚烧炉出口废气"排放执行《生活垃圾焚烧污染控制标准》(GB 18485-2014)及修改单表 4、氮氧化物执行(DB35/1976-2021)《生活垃圾焚烧氮氧化物排放标准》表 2 规定的排放限值,具体标准限值见表 6.2-1;"渗滤液处理站废气处理设施出口、餐厨垃圾事故处理设施出口、应急除臭处理设施出口"执行《恶臭污染物排放标准》(GB 14554-93)表 2 标准,具体标准限值见表 6.2-2;"飞灰仓排气筒、石灰仓排气筒、活性炭仓排气筒、水泥仓排气筒、飞灰暂存库排气筒"执行《大气污染物综合排放标准》

(GB 16297-1996) 表 2 规定的排放限值,具体标准限值见表 6.2-3; 厂界无组织执行《恶臭污染物排放标准》(GB 14554-93) 表 1 新扩改二级标准及《大气污染物综合排放标准》(GB 16297-1996) 表 2 规定的排放限值,具体标准限值见表 6.2-4。

表 6.2-1 焚烧炉出口废气排放标准限值一览表

序号	污染物	单位	数值时间	标注限值
1	颗粒物	mg/m ³	1小时均值	30
2	氮氧化物(NO _x)	mg/m ³	小时均值	200
3	二氧化硫(SO ₂)	mg/m ³	小时均值	100
4	氯化氢(HCI)	mg/m ³	小时均值	60
5	汞及其化合物(以 Hg 计)	mg/m ³	测定均值	0.05
6	镉、铊及其化合物(以 Cd+Tl 计)	mg/m ³	测定均值	0.1
7	锑、砷、铅、铬、钴、铜、锰、镍及其化合物 (以 Sb+As+Pb+Cr+Co+Cu+Mn+Ni 计)	mg/m ³	测定均值	1.0
8	二噁英	ngTEQ/m ³	测定均值	0.1
9	一氧化碳(CO)	mg/m ³	1小时均值	100

表 6.2-2 渗滤液处理站废气处理设施出口、餐厨垃圾事故处理设施出口、应急除臭处理设施出口废气排放标准限值一览表

序号	项目	单位	限值	限值来源
1	氨	kg/h	4.9 ¹ 35 ²	《恶臭污染物排放标准》(GB
2	硫化氢	kg/h	0.33 [©] 2.3 [©]	14554-93) 表 2 ①排气筒高度 15m
3	臭气浓度	无量纲	2000 [®] 4000 [®]	②排气筒高度 45m

表 6.2-3 飞灰仓排气筒、石灰仓排气筒、活性炭仓排气筒、水泥仓排气筒、飞灰暂存库排气筒标准限值一览表

序号	项目	单位	限值	限值来源
1	颗粒物	mg/m ³	120	《大气污染物综合排放标准》(GB 16297-1996)表 2

表 6.2-4 厂界标准限值一览表

序号	项目	单位	限值	限值来源
1	氨	mg/m³	1.5	
2	硫化氢	mg/m³	0.06	《恶臭污染物排放标准》(GB 14554-93)表1新扩改二级标准
3	臭气浓度	无量纲	20	
4	颗粒物	mg/m ³	1.0	《大气污染物综合排放标准》(GB 16297-1996)表 2

6.3 噪声

根据项目环评、批复及声环境功能区调整通知(附件 9),本项目厂界噪声排放执行《工业企业厂界环境噪声排放标准》(GB 12348-2008)3类区限值,具体排放限值见表 6.3-1。

 类别
 排放限值 (dB)
 执行标准

 昼间
 65
 《工业企业厂界环境噪声排放标准》(GB 12348-2008) 3 类区标准

表 6.3-1 厂界噪声标准限值一览表

6.4 固体废物

炉渣执行《生活垃圾焚烧污染控制标准》(GB 18485-2014)及《生活垃圾填埋场污染物控制标准》(GB 16889-2008),稳定固化物执行《生活垃圾填埋场污染物控制标准》(GB 16889-2008)。

序号	项目	单位	限值	限值来源	
1	热灼减率	%	5	《生活垃圾焚烧污染控制标准》 (GB 18485-2014)	
2	汞	mg/L	0.05		
3	铅	mg/L	0.25		
4	镉	mg/L	0.15		
5	总铬	mg/L	4.5		
6	六价铬	mg/L	1.5		
7	铜	mg/L	40	《生活垃圾填埋场污染物控制标	
8	锌	mg/L	100	准》(GB 16889-2008)	
9	铍	mg/L	0.02		
10	钡	mg/L	25		
11	镍	mg/L	0.5		
12	砷	mg/L	0.3		
13	硒	mg/L	0.1		

表 6.4-1 固体废物标准限值一览表

6.5 环境质量

(1) 环境空气

项目区区域环境空气执行《环境空气质量标准》(GB 3095-2012)二级标准。 二噁英参照日本环境空气质量限值(根据环评要求确定)。本次评价执行的环境 质量标准见表 6.5-1。

表 6.5-1 环境空气质量标准

污染物名称	取值时间	二级	标准
SO_2	24 小时平均	150 ug/m ³	
NO_2	24 小时平均	80 ug/m^3	
СО	1小时平均	10 mg/m ³	环境空气质量标 准《GB 3095-
颗粒物	24 小时平均	0.3mg/m^3	在《GB 3093- 2012》
硫化氢	1小时平均	$0.01 \mathrm{mg/m^3}$	
氨	1小时平均	$0.20~\mathrm{mg/m^3}$	
二噁英	24 小时平均	1.2pgTEQ/m³(年均值的 2 倍)	日本环境空气质 量限值

7 验收监测内容

7.1 废水

具体检测项目见表 7.1-1。

表 7.1-1 废水检测点位、项目及频次一览表

编号	点位名称	检测因子	采样时间、频次
★ 1	污水处理站进口	pH 值、COD、BOD5、SS、氨氮、色度、总氮、总磷、总汞、总镉、总	
★ 2	污水处理站出口	後、 必須、 心桝、 心水、 心椨、 心 ・ 格、 六价铬、 总砷、 总铅	2024.01.15~01.16, 1 天 4 次,检测 2 天
* 3	生活废水排放口	pH值、COD、BOD5、SS、氨氮、总 磷、动植物油	1 八 4 仈, 恒侧 2 八

7.2 废气

本次验收对废气污染物排放及无组织排放进行检测,具体检测内容如下。

7.2.1 有组织排放

焚烧炉排放口、飞灰仓排气筒、石灰仓排气筒、活性炭仓排气筒、水泥仓排气筒由于进口不具备监测条件故未监测。本次有组织排放验收检测内容见表7.2.1-1~表7.2.1-2。

表 7.2.1-1 固定源废气检测内容一览表

编号	点位名称	检测因子	检测时间、频次
©1	1#焚烧炉排放口	颗粒物、二氧化硫、氮氧化物、CO、	
©2	2#焚烧炉排放口	HCI、汞及其化合物,镉、铊及其化合物,锑、砷、铅、铬、钴、铜、 合物,锑、砷、铅、铬、钴、铜、 锰、镍及其化合物、二噁英	
◎3	飞灰仓排气筒		2024.01.15~01.16 1 天 3 次(小时
0 4	石灰仓排气筒 1		值),检测2天
©5	石灰仓排气筒 2	颗粒物	
©6	活性炭仓排气筒		
©7	水泥仓排气筒		
◎8	飞灰暂存库处理设施进口	颗粒物	
◎9	飞灰暂存库处理设施出口	→ → → → → → → → → → → → → → → → → → →	
©10	渗滤液处理站废气处理设施进口	硫化氢、氨、臭气浓度	
©11	渗滤液处理站废气处理设施出口	姚化圣、 	2024.01.17~01.18 1 天 3 次(小时
©12	餐厨垃圾事故处理设施进口	硫化氢、氨、臭气浓度	值),检测2天
©13	餐厨垃圾事故处理设施进口	姚化刭、贺、夹【 你/支	
©14	应急除臭处理设施进口	硫化氢、氨、臭气浓度	
©15	应急除臭处理设施进口		

7.2.2 无组织排放

厂界无组织废气检测项目、点位及频次见表 7.2.2-1。

编号 检测因子 采样时间、频次 点位名称 01 项目厂界上风向1 $\bigcirc 2$ 项目厂界下风向2 氨、硫化氢、臭气浓度、颗粒 2024.01.15~01.16 1天4次,检测2天 物 \bigcirc 3 项目厂界下风向3 04 项目厂界下风向 4

表 7.2.2-1 厂界无组织废气检测项目、点位及频次一览表

7.3 厂界噪声

根据《排污单位自行监测技术指南》明确了面临海洋、大江、大河的厂界原则上不布点,紧邻交通干线不布点,由于厂区北侧紧邻山地,且周边 200m 内无声敏感点,故北侧不设置噪声检测点。具体检测内容见表 7.3-1。

	7C 710 I /K		· 30-70
编号	点位名称	检测因子	检测时间、频次
1	厂界噪声测点1		2024.01.15~01.16
A 2	厂界噪声测点 2	L_{Aeq}	2024.01.13~01.16 昼、夜间各检测 1 次,检测 2 天
▲3	厂界噪声测点 3		

表 7.3-1 噪声检测项目、点位及频次一览表

7.4 固体废物

项目日常炉渣及固化飞灰均按批次委托检测,故引用日常对炉渣及飞灰检测数据,具体检测内容见表 7.4-1。

	7、7.4-1 固,	发世份次百、				
编号	点位名称	检测因子				
1	固化飞灰	含水率、汞、铜、锌、铅、镉、铍、钡、镍、砷、总铬、六价 铬、硒、二噁英				
= 2	炉渣	热灼减率、锰、镉、铬、汞、镍、铅、砷				

表 7.4-1 固废检测项目、点位及频次一览表

7.5 环境质量

根据环评时监测点位及环评运营期周边环境监测计划,在项目周边敏感区域设置3个检测点位,对环境空气质量进行监测,具体检测内容见表7.5-1。

表 7.5-1 环境空气检测项目、点位及频次一览表

编号	点位名称	检测因子	采样时间、频次
05	上杭县城	日均值:颗粒物、PM10、铅、砷、	
06	百联堂	镉、二氧化硫、二氧化氮、二噁英 小时均值:汞、氨、硫化氢、一氧	2024.01.15~01.16 检测 2 天
07	土埔村	化碳、氯化氢	<u> </u>

图 7.5-1 厂区检测点位示意图

图 7.5-2 环境质量检测点位示意图

8 质量保证和质量控制

8.1 监测分析方法

8.1.1 废水

废水检测分析方法、依据及检出限见表 8.1-1。

表 8.1-1 废水监测分析方法及依据

从 6.1-1								
序号	检测因子	标准号	标准名称	检出限	检测仪器			
1	pH 值	HJ 1147-2020	《水质 pH 值的测定 电极法》	/	综合水质检测仪 AZ86031			
2	COD	HJ 828-2017	《水质 化学需氧量 重铬酸钾法》	4 mg/L	酸式滴定管			
3	BOD ₅	HJ 505-2009	《水质 五日生化需氧量(BODs)的 测定 稀释与接种法》	0.5 mg/L	生化培养箱 SPX-150BE			
4	悬浮物	GB 11901-1989	《水质 悬浮物的测定 重量法》	4 mg/L	电子分析天平 HZK-FA110			
5	总磷	GB 11893-1989	《水质 总磷的测定 钼酸铵分光光度 法》	0.01 mg/L	紫外/可见分光 光度计 UV-1801			
6	总铬	GB 7466-1989	《水质 总铬的测定 高锰酸钾氧化 二苯碳酰二肼分光光度法》	4×10 ⁻³ mg/L	紫外/可见分光 光度计 UV752			
7	六价铬	GB 7467-1989	《水质 六价铬的测定 二苯碳酰二肼 分光光度法》	4×10 ⁻³ mg/L	紫外/可见分光 光度计 UV752			
8	色度	HJ 1182-2021	《水质 色度的测定 稀释倍数法》	2倍	比色管			
9	氨氮	HJ 535-2009	《水质 氨氮的测定 纳氏试剂分光光 度法》	2.5×10 ⁻² mg/L	紫外/可见分光 光度计 UV752			
10	总氮	HJ 636-2012	《水质 总氮的测定 碱性过硫酸钾消 解紫外分光光度法》	0.05 mg/L	紫外/可见分光 光度计 UV-1801			
11	总砷	GB 7485-1987	《水质 总砷的测定 二乙基二硫代氨 基甲酸银分光光度法》	7×10 ⁻³ mg/L	紫外/可见分光 光度计 UV-1801			
12	总汞	НЈ 597-2011	《水质 总汞的测定 冷原子吸收分光 光度法》	1×10 ⁻⁵ mg/L	冷原子吸收测汞 仪 F732-VJ			
13	总镉	《水和废水 监测分析方	《第三篇 第四章 七(四)石墨炉原 子吸收法》	1.0×10 ⁻⁴ mg/L				
14	总铅	法》(第四 版增补版) 国家环保总 局编	《第三篇 第四章 十六(五)石墨炉 原子吸收法》	1×10 ⁻³ mg/L	石墨炉原子吸收 分光光度计 TAS990G			
15	动植物 油	HJ 637-2018	《水质 石油类和动植物油类的测定 红外分光光度法》	0.06 mg/L	红外分光测油仪 OIL480			

8.1.2 废气

固定污染源废气检测分析方法及依据见表 8.1-2; 无组织废气检测分析方法 及依据见表 8.1-3; 环境空气检测分析方法及依据见表 8.1-4。

表 8.1-2 固定污染源废气检测分析方法、依据及检出限

序号	检测因子	标准号	宋	佐以位山阪 检出限	检测仪器
1	汞及其化 合物	НЈ 543-2009	《固定污染源废气 汞的测定 冷原 子吸收分光光度法 (暂行)》	2.5×10 ⁻³ mg/m ³	冷原子吸收测 汞仪 F732-VJ
2 3	镉及其化 合物 砷及其化		V 31001) 3) 3312. (A 11):	8×10 ⁻⁶ mg/m ³ 2×10 ⁻⁴	
4	合物 锡及其化 合物			$\frac{\text{mg/m}^3}{3\times10^{-4}}$ $\frac{3\times10^{-4}}{\text{mg/m}^3}$	
5	铅及其化 合物			2×10 ⁻⁴ mg/m ³	
6	镍及其化 合物		《空气和废气 颗粒物中铅等金属	1×10^{-4} mg/m ³	上岸把人 於京
7	铜及其化 合物	НЈ 657-2013	元素的测定 电感耦合等离子体质 谱法》及修改单(生态环境部公告	2×10 ⁻⁴ mg/m ³	电感耦合等离 子体质谱仪 7500ce
8	锰及其化 合物		2018 年第 31 号)	7×10 ⁻⁵ mg/m ³	730000
9	钴及其化 合物			8×10 ⁻ 6mg/m ³	
10	铊及其化 合物			8×10 ⁻ 6mg/m ³	
11	铬及其化 合物			3×10 ⁻⁴ mg/m ³	
12	锑及其化 合物			2×10 ⁻⁵ mg/m ³	
13	二氧化硫	НЈ 57-2017	《固定污染源废气 二氧化硫的测 定 定电位电解法》	3mg/m ³	
14	氮氧化物	НЈ 693-2014	《固定污染源废气 氮氧化物的测 定 定电位电解法》	NO: 3mg/m ³ NO ₂ : 3mg/m ³	低浓度烟尘 (气)测试仪 TW-3200D型
15	一氧化碳	НЈ 973-2018	《固定污染源废气 一氧化碳的测 定 定电位电解法》	3mg/m ³	
16	氯化氢	HJ/T 27-1999	《固定污染源排气 中氯化氢的测 定 硫氰酸汞分光光度法》	0.9 mg/m ³	可见分光光度 计 V-1100D
17	颗粒物	НЈ 836-2017	《固定污染源废气 低浓度颗粒物 的测定 重量法》	1.0mg/m ³	十万分之一天 平 SQP
18	H ₂ S	《空气和废 气监测分析 方法》(第四 版增补版) 国家环保总 局编	第五篇 第四章 十《亚甲基蓝分光 光度法》	2.5×10 ⁻³ mg/m ³	可见分光光度 计 V-1100D
19	NH ₃	НЈ 533-2009	《环境空气和废气 氨的测定纳氏 试剂分光光度法》	0.25mg/m ³	可见分光光度 计 V-1100D
20	臭气浓度	HJ 1262-2022	《环境空气和废气 臭气的测定 三 点比较式臭袋法》	/	无臭空气净化 装置
21	二噁英*	НЈ 77.2-2008	《环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨 质谱法》	/	高分辨双聚焦 磁式质谱仪 DFS

表 8.1-3 无组织废气检测分析方法、依据及检出限

序号	检测因子	标准号	标准名称	检出限	检测仪器
1	颗粒物	НЈ 1263-2022	-2022 《环境空气 总悬浮颗粒物的测定 重 量法》 0.168mg/m ³		电子天平 SQP 型
2	氨	НЈ 533-2009	《环境空气和废气 氨的测定 纳氏试 剂分光光度法》 0.01 mg/m³		可见分光光度 计 V-1100D
3	硫化氢	《空气和废气 监测分析方 法》(第四版 增补版)国家 环保总局编	第三篇 第一章 十一 《亚甲基蓝分光 光度法》	1×10 ⁻³ mg/m ³	可见分光光度 计 V-1100D
4	臭气浓度	НЈ 1262-2022	《环境空气和废气 臭气的测定 三点 比较式臭袋法》	10(无量纲)	无臭空气净化 装置

表 8.1-4 环境空气检测分析方法、依据及检出限

		7C 011 TV 175			
序号	检测因子	标准号	标准名称	检出限	检测仪器
1	颗粒物	НЈ 1263-2022	《环境空气 总悬浮颗粒物的测定 重 量法》	7×10 ⁻³ mg/m ³	电子天平 SQP 型
2	氨	НЈ 533-2009	《环境空气和废气 氨的测定 纳氏试 剂分光光度法》	0.01 mg/m ³	可见分光光度 计 V-1100D
3	二氧化硫	HJ 482-2009 及 修改单	《环境空气 二氧化硫的测定 甲醛吸 收-副玫瑰苯胺分光光度法》	4×10 ⁻³ mg/m ³	可见分光光度 计 V-1100D
4	硫化氢	《空气和废气 监测分析方 法》(第四版增 补版)国家环 保总局编	《第三篇 第一章 十一 亚甲基蓝分 光光度法》	1×10 ⁻³ mg/m ³	可见分光光度 计 V-1100D
5	铅	H	《空气和废气 颗粒物中铅等金属元	6×10 ⁻⁷ mg/m ³ ICP-MS	
6	砷	HJ 657-2013 及 修改单	素的测定 电感耦合等离子体质谱	7×10 ⁻⁷ mg/m ³	Agilent 7500
7	镉	沙以干	法》	3×10 ⁻⁸ mg/m ³	ce
8	汞	HJ 542-2009 及 修改单	《环境空气 汞的测定 疏基棉富集-冷原子荧光分光光度法(暂行)》	6.6×10 ⁻⁶ mg/m ³	智能冷原子荧 光测汞仪器 ZYG-II
9	二氧化氮	HJ 479-2009 及 修改单	《环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法》	3×10 ⁻³ mg/m ³	可见分光光度 计 V-1100D
10	PM ₁₀	HJ 618-2011 及 修改单	《环境空气 PM10和 PM2.5的测定 重量法》	1.0×10 ⁻² mg/m ³	电子分析天平 HZK-FA110
11	一氧化碳	GB 9801-88	《空气质量 一氧化碳的测定 非分散 红外法》	0.3mg/m^3	便携式红外线 气体分析器 GXH-3011A
12	氯化氢	НЈ 549-2016	《环境空气和废气 氯化氢的测定 离 子色谱法》	0.02mg/m ³	离子色谱仪 CIC-D100
13	二噁英*	НЈ 77.2-2008	《环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨 质谱法》	/	高分辨双聚焦 磁式质谱仪 DFS

8.1.3 噪声

噪声检测分析方法及依据见表 8.1-5。

表 8.1-5 厂界噪声检测分析方法、依据及检出限

序号	检测因子	标准号	标准名称	检出限	检测仪器
1	, 等效 A 声	GB 12348- 2008	《工业企业厂界环境噪声排 放标准》	25 ID	多功能声级计
1	级	НЈ 706-2014	《环境噪声监测技术规范 噪 声测量值修正》	35dB	AWA5680

8.1.4 固体废物

固体废物检测分析方法及依据见表 8.1-6。

表 8.1-6 固体废物检测分析方法、依据及检出限

序号	检测因子	标准号	标准名称	检出限
1	含水率	НЈ 1222-2021	《固体废物 水分和干物质含量的测定 重 量法》	/
2	热灼减率	НЈ 1024-2019	《固体废物 热灼减率的测定 重量法》	0.2%
3	铜			2.5ug/L
4	锌			6.4ug/L
5	镍			3.8ug/L
6	铬	111.77.7.001.5	《固体废物 金属元素的测定 电感耦合等	2.0ug/L
7	铅	НЈ 766-2015	离子体质谱法》	4.2ug/L
8	镉			1.2ug/L
9	铍			0.7ug/L
10	钡			1.8ug/L
11	砷			0.10ug/L
12	汞	НЈ 702-2014	《固体废物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法》	0.02ug/L
13	硒		PARATITITE IN 1 ACTUAL	0.10ug/L
14	六价铬	GB/T 15555.4-1995	《固体废物 六价铬的测定 二苯碳酰二肼 分光光度法》	0.004 mg/L
15	二噁英	НЈ 77.3-2008	《固体废物 二噁英类的测定 同位素稀释 高分辨气相色谱-高分辨质谱法》	/

8.2 检测仪器

本次验收检测仪器均在检定期内,验收检测所用仪器见表 8.2-1。

表 8.2-1 验收期间仪器使用情况一览表

		74 01 42		ערטע טי	
序号	检测因子	型号	仪器名称	编号	校准或检定
	pH 值	AZ86031	综合水质检测仪	HQYQ033-3	有效期至 2024.9.24
	COD	50mL	酸式滴定管	HQBL008	有效期至 2025.7.4
	BOD ₅	SPX-150BE	生化培养箱	HQYQ016	有效期至 2024.6.28
废水 _	SS	HZK-FA110	电子分析天平	HQYQ110	有效期至 2024.2.23
废水	氨氮、总 铬、六价铬	UV-752	紫外/可见分光光度计	HQYQ012-2	有效期至 2024.12.21
	总磷、总 氮、总砷	UV-1801	紫外/可见分光光度计	HQYQ012	有效期至 2024.2.23
	总汞	F732-VJ	冷原子吸收测汞仪	HQYQ066	有效期至 2024.6.28
	动植物油	OIL480	红外分光测油仪	HQYQ004	有效期至 2024.6.28
	总镉、总铅	TAS990G	石墨原子吸收分光光度 计	HQYQ002	有效期至 2024.7.3
	颗粒物	SQP 型	电子天平	HQYQ044	有效期至 2024.6.28
	硫化氢、氨	V-1100D	可见分光光度计	HQYQ011	有效期至 2024.2.23
-	硫化氢、氨 采样	ADS-2062G	高负压智能综合采样器	HQYQ006- 7、8	有效期至 2024.9.19
	氯化氢	崂应 2050	空气智能 TSP 综合	HQYQ006-6	有效期至 2024.7.1
固定	颗粒物、重	EM-3088	智能烟尘烟气分析仪	HQYQ007-4	有效期至 2024.10.8
源废气	金属采样	TW-3200D 型	低浓度烟尘(气)测试 仪	HQYQ007- 5、6	有效期至 2024.3.5
	汞	F732-VJ	冷原子吸收测汞仪	HQYQ066	有效期至 2024.6.28
	氯化氢	V-1100D	可见分光光度计	HQYQ011	有效期至 2024.2.23
	铅、砷、 铬、镉、 铜、镍、 锡、锑、锰	7500ce	电感耦合等离子体质谱	HQYQ075	有效期至 2024.6.28
噪声	学为 A 吉卯	AWA5680	多功能声级计	HQYQ045-3	有效期至 2024.12.15
際尸	等效A声级	AWA6221A	声校准器	HQYQ049-1	有效期至 2024.6.5
	颗粒物	HZK-FA110	电子分析天平	HQYQ110	有效期至 2024.6.28
		虚应 2050	空气智能 TSP 综合	HQYQ006-5	有效期至 2024.7.1
		崂应 2050	工 (有配 137 综百	HQYQ006-6	有效期至 2024.7.1
				HQYQ006-9	有效期至 2024.9.19
		ADS-2062G	 高负压智能综合采样器	HQYQ006-10	有效期至 2024.9.19
	废气采样	AD5-2002G	间火压自能然口水杆部	HQYQ006-11	有效期至 2024.9.19
	100 C)(C)(HQYQ006-12	有效期至 2024.9.19
				HQYQ006-13	有效期至 2024.4.18
无组		TW-2630 型	综合大气/烟气/VOC8 采	HQYQ006-14	有效期至 2024.4.18
织废			样器	HQYQ006-15	有效期至 2024.4.18
气				HQYQ006-16	有效期至 2024.4.18
	铅、砷、镉	7500ce	电感耦合等离子体质谱	HQYQ075	有效期至 2024.6.28
	汞	ZYG-II	智能冷原子荧光测汞仪	HQYQ014	有效期至 2024.6.28
	氯化氢	CIC-D100	离子色谱仪	HQYQ111	有效期至 2024.4.25
	硫化氢氨二氧化硫二氧化氮	V-1100D	可见分光光度计	HQYQ011	有效期至 2024.2.23
	一氧化碳	GXH-3011A	便携式红外线气体分析 器	HQYQ009	有效期至 2024.6.29

8.3人员信息

验收期间所有参加检测的技术人员均持上岗证。人员持证信息见表 8.3-1。

表 8.3-1 技术人员持证一览表

序号		3-1 技术人员持证一览表	项目
1		宏其测字第 006 号	环境空气采样
2	章进平	宏其测字第 022 号	废气采样
3	杨书强	宏其测字第 067 号	废气采样
4	陈登辉	宏其测字第 071 号	废水采样、噪声检测、环境 空气采样
5	黄臻炜	宏其测字第 076 号	环境空气采样
6	李捷	宏其测字第 084 号	废气采样
7	周航	宏其测字第 085 号	废气采样
8	杨金灿	宏其测字第 087 号	废气采样
9	李金宝	宏其测字第 091 号	环境空气采样
10	熊江东	宏其测字第 093 号	废水采样、噪声检测、环境 空气采样
11	杜伟	宏其测字第 094 号	废气采样
12	廖亮	宏其测字第 096 号	废气采样
13	詹仕东	宏其测字第 098 号	环境空气采样
14	陈锐	宏其测字第 005 号	实验分析
15	林如娇	宏其测字第 007 号	实验分析
16	陈舒柠	宏其测字第 018 号	实验分析
17	黄文涛	宏其测字第 031 号	实验分析
18	林光辉	宏其测字第 036 号	实验分析
19	陈诗妍	宏其测字第 042 号	实验分析
20	杨梦丽	宏其测字第 045 号	实验分析
21	黄静娴	宏其测字第 062 号	实验分析
22	张静妍	宏其测字第 063 号	实验分析
23	彭星鑫	宏其测字第 077 号	实验分析
24	罗圣	宏其测字第 079 号	实验分析
25	章信鑫	宏其测字第 081 号	实验分析
26	王杪	宏其测字第 099 号	实验分析

8.4 水质监测分析过程中的质量保证和质量控制

水质检测质控信息见表 8.4-1、8.4-2。

表 8.4-1 水质质控与平行样检测结果 1

			14 12	***		, , , , ,		
检测项 目	样品数	平行样数	相对偏差 (%)	质控样 证书号	标准值 或使用液 浓度 (mg/L)	测定值 (mg/L)	相对 误差 (%)	评价结果
pH 值	24	2	0.00	B23020247	7.44±0.05	7.49 (无量纲)	0.67	合格
		_			(无量纲)	7.49 (无量纲)	0.67	
				2001162	51.5±3.2	53.2	3.30	合格
COD	24	6	-5.26~4.76	2001102	31.3±3.2	52.9	2.72	日徂
СОБ	24	U	-3.20~4.70	5737384	23.5±1.175	22.7	-3.40	合格
				3737304	23.3±1.173	22.7	-3.40	日田
BOD ₅	24	4	-4.10~3.49	葡萄糖-谷氨	210±20	223	6.19	合格
	24	4	-4.10~3.49	酸标准溶液	210±20	222	5.71	日田
总磷	24	6	-5.88~0.99	23DA0173	1.58±0.08	1.63	3.16	合格
10x 194	24	0	-5.00/-0.77	23DA0173	1.36±0.06	1.57	-0.63	日和
总铬	16	4	-1.92~0.00	B22040171	0.976±0.073	0.964	-1.23	合格
	10		-1.72/-0.00		0.770±0.073	0.986	1.02	н 1н
六价铬	16	4	1 (4 0 00	B22070225 (稀释 20	5 22 10 24	0.271	1.88	合格
ハ 川 埼 	16	4	-1.64~0.00	倍)	5.32±0.24	0.275	3.38	百倍
氨氮	24	6	-1.82~3.53	B22040235	17.7±0.8	3.59	1.41	合格
女(火)	24	0	-1.02~3.33	(稀释 5 倍)	17.7±0.6	3.56	0.56	日和
总氮	16	4	-1.39~1.45	B22030202	10.2±0.5	5.12	0.39	合格
—————————————————————————————————————	10	-	-1.37-1.43	(稀释2倍)	10.2±0.3	5.16	1.18	нлн
总砷	16	4	0.00	200460	44.4±3.2	0.0446	0.45	合格
	10		0.00		(ug/L)	0.0437	-1.58	нлн
总镉	16	4	-3.57~8.82	A7L1 (稀释 5 倍)	0.159±0.005	6.505ug/L	2.28	合格
总铅	16	4	-3.23~3.03	A7L1 (稀释 5 倍)	0.321±0.010	64.391 (μg/L)	0.30	合格
			表 8.4-2	水质质控	数据汇总表	£ 2		
检测项目	样品数	平行样数	相对 偏差 (%)	标准溶液	加标量 (ug)	回收量 (ug)	加标回 收率 (%)	评价 结果

检测 项目	样品数	平行 样数	相对 偏差 (%)	标准溶液	加标量 (ug)	回收量 (ug)	加标回 收率 (%)	评价 结果
总汞	16	4	0.00	10.0ug/L 加标 1.00mL	10 (ng)	9.80 (ng) 9.70 (ng)	98.0 97.0	合格
石油类	8	/	/	100.0mg/L 加标 1.50mL	150	129.7	86.5	合格

8.5 气体监测分析过程中的质量保证和质量控制

气体检测质控信息见表 8.5-1~8.5-13。

表 8.5-1 标准滤膜质控数据汇总表 1

				衣	8.5-1	你 作	尨	支控数 指	括犯し	J 交尼				
编号		名	呂称		分析时间		滤膜始 (g)	标准注 称重	1	称	滤膜 重 2 g)	允	许偏差 (g)	评价
	1#5	无组织标	准滤膜((A)		0.30	6057	0.360	056	0.36	5054	<(0.00050	合格
1#			准滤膜(2024.	0.30	6124	0.36	121	0.36118		<(< 0.00050	
			生滤膜 (01.17	0.3	3594	0.35	92	0.3	590	<	0.0005	合格 合格
2#						0.3	8619	0.36	17	0.3	614	<	0.0005	合格
	2# PM ₁₀ 标准滤膜(B) 1#无组织标准滤膜(A)				0.30	6057	0.360	051	0.36	5053	<(0.00050	合格	
3#			准滤膜(2024.	0.30	6124	0.36	120	0.36	5123	<(0.00050	合格
-			生滤膜 (01.18	0.3	3594	0.35	93	0.3	591	<	0.0005	合格
4#	2#	PM10标	准滤膜(B)		0.3	8619	0.36	15	0.3	613	<	0.0005	合格
				表	8.5-2	标准法	滤膜质		居汇点	总表 2				ı
编				分	折 :	标准滤膜	莫始	标准滤	模	标准》		允i	午偏差	
号		名称	ζ	时间		重 (g)		称重1(称重2			(g)	评价
	1#	标准滤膜	算 (A)	202		12.72806					12.72802		<0.00050	
1#			01.				12.18379		12.18381		< 0.00050		合格 合格	
-		标准滤膜		202	4.	12.72806		12.72801		12.72	799	<0.	.00050	合格
2#		标准滤膜		01.		12.1838	81	12.1837	'6	12.18	379	<0.	.00050	合格
-		标准滤膜		202	4.	4. 12.7280		12.7279	19	12.72	802	<0.	.00050	合格
3#		标准滤膜		01.	19	12.18381		12.1838	30	12.18	377	<0.	.00050	合格
-		标准滤膜		202	4.			12.72799		12.72	803	<0.	.00050	合格
4#		标准滤膜		01.3			81	12.1838	66	12.18	377	<0.	.00050	合格
				表 8	.5-3	无组织	一度气	质控监	测纪	果表	1		<u> </u>	
检	测	样品数	平行数	相对	偏差	评价		控样	标准	住值	测值	直	相对误差	评价
项	目	(个)	(个)	(0)	%)	结果		书号	(ug	g/L)	(ug/	L)	(%)	结果
轺	п. П	6	3	-0.0~	1.37	合格		00ug/L 隹溶液	50	0.00	45	.7	-8.60	合格
铅	剪	6	3	0.00	~11.1	合格	50.0	00ug/L 隹溶液	50	0.00	52	.8	5.60	合格
秬	‡	6	3	-1.82	~0.00	合格		00ug/L 隹溶液	50	0.00	54	.9	9.80	合格
氯氢		/	/	,	′	/		070416 绎 5 倍)		1±3.2 g/L)	14.2 (mg	/L)	-2.29	合格
	氧	/	/		, I			3020001		±1.0%	30 (mg/	m^3)	1.32	合格
化	碳	,	,	,		,	3	314	(mg	g/m ³)	31. (mg/	m ³)	3.28	ни
复	Ī	/	/	,	′	/	20	06913	0.992	± 0.060	0.9		-1.61	合格
											0.9	82	-1.01	

表 8.5-4 无组织废气质控监测结果表 2

检测 项目	标准溶液	加标量(ug)	测定值(ug)	加标回收率 (%)	评价 结果	
			1.99	99.5		
77: /l. (=	5.00mg/L	2	1.96	98.0	合格	
硫化氢	加标 0.40mL	2	1.97	98.5	口俗	
			1.98	99.0		
T:	500ng/mL	3.5ng	3.3988ng	97.1	合格	
汞	加标 7uL	5.0.15	3.3820ng	96.6	口俗	
<i>→ /= / , r)</i> :	1.0mg/L	0.5	0.469	93.8	合格	
二氧化硫	加标 0.50mL	0.3	0.491	98.3	口俗	
- E /I. E	2.5mg/L	0.25	0.245	98.0	合格	
二氧化氮	加标 0.10mL	0.25	0.232	92.8	口恰	

表 8.5-5 无组织大气采样器校准记录表 1

校准时间	仪器编	号	被校准仪器 流量示值 L/min	校准器读数 L/min	示值误差%	评价结果
		A 路	0.20	0.203	-1.5	合格
	HQYQ006-5	B路	0.20	0.200	0.0	合格
		颗粒物	100.0	99.2	0.8	合格
		A 路	0.20	0.203	-1.5	合格
	HQYQ006-6	B路	0.20	0.206	-3.0	合格
		颗粒物	100.0	101.7	-1.7	合格
		A 路	1.00	1.023	-2.3	合格
	HQYQ006-9	B路	1.00	1.029	-2.9	合格
		颗粒物	100.0	99.9	0.1	合格
	HQYQ006- 10	A 路	1.00	1.006	-0.6	合格
2024.01.14		B路	1.00	1.012	-1.2	合格
(采样		颗粒物	100.0	100.2	-0.2	合格
前)	*********	A 路	1.00	1.008	-0.8	合格
	HQYQ006-	B路	1.00	1.023	-2.3	合格
	11	颗粒物	100.0	99.6	0.4	合格
	*********	A 路	1.00	0.998	0.2	合格
	HQYQ006-	B路	1.00	1.013	-1.3	合格
	12	颗粒物	100.0	99.8	0.2	合格
		A 路	1.00	1.027	-2.7	合格
	*********	B路	1.00	1.017	-1.7	合格
	HQYQ006-	C路	1.00	0.987	1.3	合格
	13	D路	0.30	0.300	0.0	合格
		颗粒物	100.0	99.9	0.1	合格

续表 8.5-5

校准时间	仪器编	号	被校准仪器 流量示值 L/min	校准器读数 L/min	示值误差%	评价结果
		A 路	1.00	1.029	-2.9	合格
	*******	B路	1.00	1.034	-3.4	合格
	HQYQ006- 14	C 路	1.00	1.000	0.0	合格
2024.01.14 (采样 前)		D路	0.30	0.302	-0.7	合格
		颗粒物	100.0	102.7	-2.7	合格
		A 路	1.00	1.017	-1.7	合格
		B路	1.00	1.017	-1.7	合格
	HQYQ006-	C 路	1.00	1.025	-2.5	合格
	15	D路	0.30	0.300	0.0	合格
		颗粒物	100.0	101.6	-1.6	合格
		A 路	0.20	0.197	1.5	合格
	HQYQ006-	B路	0.20	0.201	-0.5	合格
	16	颗粒物	100.0	101.5	-1.5	合格
		A 路	0.20	0.207	-3.5	合格
	HQYQ006-5	B路	0.20	0.205	-2.5	合格
		颗粒物	100.0	102.5	-2.5	合格
		A 路	0.20	0.206	-3.0	合格
	HQYQ006-6	B路	0.20	0.204	-2.0	合格
		颗粒物	100.0	102.7	-2.7	合格
		A 路	1.00	1.016	-1.6	合格
	HQYQ006-9	B路	1.00	1.006	-0.6	合格
		颗粒物	100.0	100.3	-0.3	合格
		A 路	1.00	1.025	-2.5	合格
2024.01.17	HQYQ006-	B路	1.00	1.006	-0.6	合格
(采样	10	颗粒物	100.0	100.1	-0.1	合格
后)		A 路	1.00	1.000	0.0	合格
	HQYQ006-	B路	1.00	1.017	-1.7	合格
	11	颗粒物	100.0	100.0	0.0	合格
		A 路	1.00	0.994	0.6	合格
	HQYQ006-	B路	1.00	1.011	-1.1	合格
	12	颗粒物	100.0	99.6	0.4	合格
		A 路	1.00	1.012	-1.2	合格
		B路	1.00	1.017	-1.7	合格
	HQYQ006-	C 路	1.00	1.026	-2.6	合格
	13	D路	0.30	0.301	-0.3	合格
		颗粒物	100.0	99.8	0.2	合格

续表 8.5-5

校准时间	仪器编	号	被校准仪器 流量示值 L/min	校准器读数 L/min	示值误差%	评价结果
		A 路	1.00	0.985	1.5	合格
	*******	B路	1.00	1.005	-0.5	合格
	HQYQ006-	C路	1.00	1.010	-1.0	合格
	14	D路	0.30	0.302	-0.7	合格
		颗粒物	100.0	101.7	-1.7	合格
2024.01.17		A 路	1.00	0.985	1.5	合格
(采样		B路	1.00	0.990	1.0	合格
后)	HQYQ006-	C路	1.00	0.970	3.0	合格
	15	D路	0.30	0.300	0.0	合格
		颗粒物	100.0	99.5	0.5	合格
	*********	A 路	0.20	0.206	-3.0	合格
	HQYQ006-	B路	0.20	0.203	-2.5	合格
	16	颗粒物	100.0	99.5	0.5	合格

表 8.5-6 固定源废气质控监测结果表 1

	检测	样品数	平行数	相对偏差	评价	质控样	标准值	测值	相对误差	评价
	项目	(个)	(个)	(%)	结果	证书号	(ug/L)	(ug/L)	(%)	结果
	铅	12	2	0.00~2.13	合格	50.00ug/L 标准溶液	50.00	50.1	0.20	合格
_	砷	12	2	-1.33~-0.97	合格	50.00ug/L 标准溶液	50.00	48.3	-3.40	合格
_	镉	12	2	-12.5~7.80	合格	50.00ug/L 标准溶液	50.00	48.6	-2.80	合格
_	铬	12	2	0.28~1.93	合格	50.00ug/L 标准溶液	50.00	48.4	-3.20	合格
_	铜	12	2	0.00	合格	50.00ug/L 标准溶液	50.00	48.8	-2.40	合格
_	镍	12	2	0.00	合格	50.00ug/L 标准溶液	50.00	46.2	-7.60	合格
_	锑	12	2	-0.79~1.27	合格	50.00ug/L 标准溶液	50.00	50.0	0.00	合格
_	锰	12	2	-1.50~-1.24	合格	50.00ug/L 标准溶液	50.00	48.9	-2.20	合格
_	钴	12	2	-7.91~-2.70	合格	50.00ug/L 标准溶液	50.00	49.0	-2.00	合格
_	钛	12	2	0.00	合格	50.00ug/L 标准溶液	50.00	49.7	-0.60	合格
	与	/	/		/	206913	0.992± 0.060	0.976 (mg/L)	-1.61	合格
_	氨	,	,	/	,	200913	(mg/L)	1.02 (mg/L)	-2.82	口俗

表 8.5-7 固定源废气质控监测结果表 2

检测 项目	标准溶液	加标量(ug)	测定值(ug)	加标回收率 (%)	评价 结果
水儿层	5.00mg/L	2.0	1.97	98.5	合格
硫化氢	加标 0.40mL	2.0	1.98	99.0	口俗
T.	$0.01 \mathrm{mg/L}$	0.010	0.0099	99.0	合格
汞	加标 1.00mL	0.010	0.0098	98.0	口竹
层 //. 层	10mg/L	5	5.10	102	合格
氯化氢	加标 0.50mL	3	4.82	96.4	口俗

表 8.5-8 烟气校准记录表

松准日期	心鬼护旦	标气	保证值	测定结果	(mg/m^3)	相对误差	差(%)
校准日期	仪器编号	(mg/m^3)	(mg/m^3)	采样前	采样后	采样前	采样后
		O ₂ (%)	5.95 (%)	6.1 (%)	6.2 (%)	+2.5	+4.2
		O2 (70)	9.99 (%)	10.1 (%)	10.2 (%)	+1.1	+2.1
		SO ₂	52.3	53	53	+1.3	+1.3
			156	157	158	+0.6	+1.3
	11000007.5	NO	80.8	83	82	+2.7	+1.5
	HQYQ007-5	NO	198	202	200	+2.0	+1.0
		NO ₂	82.4	83	83	+0.7	+0.7
2024.01.14		NO ₂	203	206	207	+1.5	+2.0
2024.01.14 (采样		СО	30.4	30	29	-1.3	-4.6
前)、			99.7	100	99	+0.3	-0.7
2024.01.18		O ₂ (%)	5.95 (%)	6.0 (%)	5.9 (%)	+0.8	-0.8
(采样 后)	HQYQ007-6	O ₂ (70)	9.99 (%)	10.0 (%)	10.0 (%)	+0.1	+0.1
/ロノ	HQ1Q007-6	SO_2	52.3	53	52	+1.3	-0.6
		302	156	156	157	+0.0	+0.6
		NO	80.8	81	82	+0.2	+1.5
		NO	198	199	200	+0.5	+1.0
	HOVO007 6	NO ₂	82.4	84	84	+1.9	+1.9
	HQYQ007-6	NO ₂	203	201	206	-1.0	+1.5
		СО	30.4	30	30	-1.3	-1.3
			99.7	100	100	+0.3	+0.3

表 8.5-9 烟尘流量校准记录表

校准时间	仪器编	号	被校准仪器 流量示值 L/min	校准器读数 L/min	示值误差%	评价结果
2024.01.14	HQYQ007-4	烟尘	50.0	50.1	-0.2	合格
(采样	HQYQ007-5	烟尘	50.0	50.0	0.0	合格
前)	HQYQ007-6	烟尘	50.0	49.7	0.6	合格
2024.01.18	HQYQ007-5	烟尘	50.0	50.3	-0.6	合格
(采样 后)	HQYQ007-6	烟尘	50.0	50.0	0.0	合格

表 8.5-10 固定源大气采样器校准记录表 2

校准时间	仪器编	号	被校准仪器 流量示值 L/min	校准器读数 L/min	示值误差%	评价结果
	1101/0006 7	A路	0.50	0.498	0.4	合格
2024.01.14	HQYQ006-7	B路	0.50	0.513	-2.6	合格
(采样 前)	1101/0006 0	A 路	0.50	0.509	-1.8	合格
	HQYQ006-8	B路	0.50	0.493	1.4	合格
	1101/0006 7	A 路	0.50	0.495	1.0	合格
2024.01.18	HQYQ006-7	B路	0.50	0.496	0.8	合格
(采样 后)	1101/000(0	A 路	0.50	0.500	0.0	合格
	HQYQ006-8	B路	0.50	0.493	1.4	合格

表 8.5-11 固定源二噁英质控 1

样品编号	FZK24	401500101	FZK2401500102	FZK2401500103	FZK2401500104	FZK2401500105	FZK2401500106
	项目	回收率(%)	回收率(%)	回收率(%)	回收率(%)	回收率(%)	回收率(%)
采样内标	³⁷ Cl ₄ -2378- TCDD	84	87	102	94	96	83
	¹³ C-2378-TCDF	62	61	59	64	67	61
	¹³ C-12378- PeCDF	86	79	76	79	87	79
	¹³ C-23478- PeCDF	84	78	66	74	79	76
	¹³ C-123478- HxCDF	101	99	107	103	107	97
	¹³ C-123678- HxCDF	100	102	107	114	109	10
	¹³ C-234678- HxCDF	98	102	98	100	96	97
	¹³ C-123789- HxCDF	84	89	88	93	95	89
净化内标	¹³ C-1234678- HpCDF	76	89	84	88	87	77
	¹³ C-1234789- HpCDF	80	77	71	70	71	68
	¹³ C-2378-TCDD	79	75	65	68	76	75
	¹³ C-12378- PeCDD	108	100	92	98	105	107
	¹³ C-123478- HxCDD	85	85	90	83	84	81
	¹³ C-123678- HxCDD	92	91	91	95	94	89
	¹³ C-1234678- HpCDD	79	75	72	72	73	70
	¹³ C-OCDD	51	49	47	47	49	45

表 8.5-12 固定源二噁英质控 2

样品编号	FZK2	401500201	FZK2401500202	FZK2401500203	FZK2401500204	FZK2401500205	FZK2401500206
	项目	回收率(%)	回收率(%)	回收率(%)	回收率(%)	回收率(%)	回收率(%)
采样内标	³⁷ Cl ₄ -2378- TCDD	101	90	85	94	84	96
	¹³ C-2378-TCDF	64	61	59	60	63	61
	¹³ C-12378- PeCDF	80	77	73	81	85	77
	¹³ C-23478- PeCDF	73	72	63	75	76	72
	¹³ C-123478- HxCDF	113	99	104	111	122	108
	¹³ C-123678- HxCDF	112	105	101	109	126	114
	¹³ C-234678- HxCDF	102	95	91	104	113	108
	¹³ C-123789- HxCDF	90	76	82	88	100	83
净化内标	¹³ C-1234678- HpCDF	81	67	62	74	86	71
	¹³ C-1234789- HpCDF	67	53	47	56	69	61
	¹³ C-2378-TCDD	75	79	73	79	81	76
	¹³ C-12378- PeCDD	102	97	83	91	100	94
	¹³ C-123478- HxCDD	90	87	84	95	99	89
	¹³ C-123678- HxCDD	97	92	96	95	111	102
	¹³ C-1234678- HpCDD	67	49	47	57	69	60
	¹³ C-OCDD	42	35	28	37	43	39

表 8.5-13 环境空气二噁英质控

1,1,		401500101	KZK2401500102	KZK2401500201	KZK2401500202
	项目	回收率(%)	回收率(%)	回收率(%)	回收率(%)
采样内标	³⁷ Cl ₄ -2378-TCDD	94	100	89	92
	¹³ C-2378-TCDF	60	60	64	63
	¹³ C-12378-PeCDF	78	73	81	76
	¹³ C-23478-PeCDF	70	69	75	65
	¹³ C-123478-HxCDF	107	103	100	91
	¹³ C-123678-HxCDF	109	104	107	94
	¹³ C-234678-HxCDF	104	100	99	89
	¹³ C-123789-HxCDF	93	90	84	84
净化内标	¹³ C-1234678-HpCDF	85	83	82	70
	¹³ C-1234789-HpCDF	79	71	69	66
	¹³ C-2378-TCDD	71	67	73	72
	¹³ C-12378-PeCDD	92	93	91	82
	¹³ C-123478-HxCDD	87	80	79	77
	¹³ C-123678-HxCDD	88	88	81	85
	¹³ C-1234678-HpCDD	78	73	71	63
	¹³ C-OCDD	47	46	44	41

8.6 噪声监测分析过程中的质量保证和质量控制

噪声检测仪器质控数据见表 8.6-1。

表 8.6-1 噪声仪质控数据表

日期	仪器编号	测量时间	校准值	声校准器标称声压级	结果
2024.01.15		采样前	93.8dB(A)		合格
	11000045 2	采样后	93.8dB(A)	04.0.4D(A)	自作
2024.01.16	HQYQ045-3	采样前	93.8dB(A)	94.0 dB(A)	合格
		采样后	93.8dB(A)		日俗

9验收监测结果

9.1 生产工况

根据上杭红新能源科技有限公司提供的工况证明,竣工环保验收检测期间,该公司生产保持正常,环保设施运行正常,满足竣工环境保护验收要求,具体运行负荷见表 9.1-1;

表 9.1-1 验收检测期间工况负荷表

		X 9.1	-1 3224	义位侧别问_	上班贝彻农				
项目名称				上杭县生活垃圾	及焚烧发电项目				
生产规模	日处理生活垃圾 600 吨(1#、2#各 300 吨/天)、餐厨垃圾 30 吨								
	-54		× />		日	期			
	圳	I目	単位	2024.01.15	2024.01.16	2024.01.17	2024.01.18		
	垃圾入	1#焚烧 炉	t/d	262.03	239.54	233.41	227.99		
	炉量	2#焚烧 炉	t/d	280.04	227.41	228.46	233.91		
	渗滤液	处理量	t/d	108	72	95	95		
	1#焚烧炉负荷率		%	87.3	79.8	77.8	76.0		
主要原辅材料	2#焚烧炉负荷率		%	93.3	75.8	76.1	78.0		
五安原福材料 及其用量 (检测日)	餐厨垃圾处置量		t/d	23.1	22.6	24.5	25.6		
(1927例 口)	负荷率		%	77.0	75.3	81.7	85.3		
	发电量		千瓦 时	200125	205725	183500	177050		
	氨水		t/d	1.1	0.8	0.9	0.9		
	活性	生炭	t/d	1.04	0.26	0.28	0.24		
	PNCR	脱硝剂	t/d	0.3	0.3	0.5	0.6		
	柴	油	t/d	12.07	0.63	0.55	0		
	石	灰	t/d	2.73	2.5	1.42	1.22		

备注:负荷率以垃圾焚烧量计。

9.2 污染物排放监测结果

9.2.1 废水

废水检测结果检测结果见表 9.2.1-1;

表 9.2.1-1 废水检测结果一览表

			× >.2.1 1		检测频次			
采样 日期	点位名称	检测项目	1	2	3	4	均值或范 围	単位
		水温	23.5	24.2	24.7	23.9	/	°C
		pH 值	7.1	7.2	7.2	7.1	7.1~7.2	无量纲
		SS	8.60×10 ³	8.43×10 ³	8.62×10 ³	9.01×10^{3}	8.66×10 ³	mg/L
		COD	3.11×10 ⁴	3.08×10 ⁴	3.15×10 ⁴	3.21×10 ⁴	3.14×10^4	mg/L
		BOD ₅	1.36×10 ⁴	1.38×10 ⁴	1.40×10 ⁴	1.44×10 ⁴	1.40×10 ⁴	mg/L
		总磷	40.6	48.5	45.6	43.7	44.6	mg/L
	★ 1	总铬	5.2×10 ⁻²	7.0×10 ⁻²	5.9×10 ⁻²	7.2×10 ⁻²	6.3×10 ⁻²	mg/L
	污水处理	六价铬	3.0×10 ⁻²	4.7×10 ⁻²	3.7×10 ⁻²	4.2×10 ⁻²	3.9×10 ⁻²	mg/L
	站进口	色度	400	400	400	400	/	倍
		氨氮	1.27×10 ³	990	1.13×10 ³	1.07×10 ³	1.12×10 ³	mg/L
		总氮	2.44×10^{3}	2.29×10^{3}	2.70×10^{3}	2.38×10^{3}	2.45×10 ³	mg/L
		总砷	1.6×10 ⁻²	1.4×10 ⁻²	1.5×10 ⁻²	1.5×10 ⁻²	1.5×10 ⁻²	mg/L
		总汞	1×10-5L	1×10 ⁻⁵ L	1×10 ⁻⁵ L	1×10 ⁻⁵ L	1×10 ⁻⁵ L	mg/L
		总镉	4.34×10 ⁻³	3.81×10 ⁻³	4.49×10 ⁻³	3.64×10 ⁻³	4.07×10 ⁻³	mg/L
2024.		总铅	1.7×10 ⁻²	1.5×10 ⁻²	1.4×10 ⁻²	1.6×10 ⁻²	1.6×10 ⁻²	mg/L
01.15		水温	31.8	31.5	32.3	31.4	/	°C
		pH 值	7.0	7.0	6.9	6.8	6.8~7.0	无量 纲
		SS	17	19	15	16	17	mg/L
		COD	11	10	10	9	10	mg/L
		BOD ₅	3.6	3.3	3.1	2.9	3.2	mg/L
		总磷	0.09	0.12	0.08	0.11	0.10	mg/L
	★ 2	总铬	4×10 ⁻³ L	mg/L				
	污水处理 站出口	六价铬	4×10 ⁻³ L	mg/L				
	珀山口	色度	2	2	2	2	/	倍
		氨氮	4.1×10 ⁻²	0.147	6.4×10 ⁻²	9.6×10 ⁻²	8.7×10 ⁻²	mg/L
		总氮	29.2	28.2	26.4	27.3	27.8	mg/L
		总砷	7×10 ⁻³ L	mg/L				
		总汞	1×10-5L	1×10 ⁻⁵ L	1×10 ⁻⁵ L	1×10 ⁻⁵ L	1×10 ⁻⁵ L	mg/L
		总镉	3.1×10 ⁻⁴	2.9×10 ⁻⁴	4.2×10 ⁻⁴	2.2×10 ⁻⁴	3.1×10 ⁻⁴	mg/L
		总铅	3×10 ⁻³	2×10 ⁻³	2×10 ⁻³	3×10 ⁻³	2×10 ⁻³	mg/L

续表 9.2.1-1

	9.2.1-1				检测频次			
采样	点位名称	检测项目					均值或范	单位
日期			1	2	3	4	围	
		水温	21.4	21.5	22.3	21.4	/	°C
		pH 值	8.1	7.9	8.0	8.0	7.9~8.1	无量纲
		SS	44	43	41	46	44	mg/L
2024.	★3 生活废水	COD	200	190	208	202	200	mg/L
01.15	排放口	BOD ₅	80.4	76.4	82.0	77.4	79.0	mg/L
		总磷	4.05	5.87	5.68	4.52	5.03	mg/L
		氨氮	38.8	35.5	40.9	42.1	39.3	mg/L
		动植物油	1.76	1.75	1.78	1.81	1.78	mg/L
		水温	21.4	21.9	22.3	22.0	/	°C
		pH 值	7.0	7.2	7.2	7.1	7.0~7.2	无量 纲
		SS	9.12×10^{3}	8.54×10^3	8.70×10^3	8.93×10 ³	8.82×10^3	mg/L
		COD	3.22×10 ⁴	3.12×10^4	3.18×10^4	3.25×10^4	3.19×10 ⁴	mg/L
	★1 污水处理 站进口	BOD ₅	1.42×10 ⁴	1.41×10 ⁴	1.41×10 ⁴	1.45×10 ⁴	1.42×10 ⁴	mg/L
		总磷	47.8	42.7	43.4	45.6	44.9	mg/L
		总铬	7.5×10 ⁻²	5.5×10 ⁻²	7.2×10 ⁻²	7.1×10 ⁻²	6.8×10 ⁻²	mg/L
		六价铬	4.8×10 ⁻²	3.5×10 ⁻²	4.3×10 ⁻²	4.5×10 ⁻²	4.3×10 ⁻²	mg/L
		色度	400	400	400	400	/	倍
		氨氮	1.21×10^3	1.03×10^3	1.08×10^3	1.04×10^3	1.09×10^{3}	mg/L
		总氮	2.27×10^{3}	2.10×10^{3}	2.49×10^{3}	2.57×10^3	2.36×10^{3}	mg/L
		总砷	1.7×10 ⁻²	1.5×10 ⁻²	1.4×10 ⁻²	1.5×10 ⁻²	1.5×10 ⁻²	mg/L
2024. 01.16		总汞	1×10-5L	1×10 ⁻⁵ L	1×10-5L	1×10-5L	1×10 ⁻⁵ L	mg/L
		总镉	4.69×10 ⁻³	4.96×10 ⁻³	4.38×10 ⁻³	4.64×10 ⁻³	4.67×10 ⁻³	mg/L
		总铅	1.7×10 ⁻²	1.6×10 ⁻²	1.4×10 ⁻²	1.6×10 ⁻²	1.6×10 ⁻²	mg/L
		水温	28.6	29.1	29.6	28.9	/	°C
		pH 值	6.7	6.9	6.7	6.7	6.7~6.9	无量 纲
		SS	18	16	14	15	16	mg/L
		COD	10	8	10	8	9	mg/L
	★2 污水处理	BOD_5	3.5	3.8	3.2	2.6	3.3	mg/L
	站出口	总磷	0.11	0.13	0.11	0.09	0.11	mg/L
		总铬	4×10 ⁻³ L	mg/L				
		六价铬	4×10 ⁻³ L	mg/L				
		色度	2	2	2	2	/	倍
		氨氮	8.4×10 ⁻²	0.239	0.144	0.121	0.147	mg/L

续表 9.2.1-1

-X-14-								
采样					检测频次			
日期	点位名称	检测项目	1	2	3	4	均值或范 围	单位
		总氮	27.8	26.8	27.2	28.3	27.5	mg/L
	★ 2	总砷	7×10 ⁻³ L	mg/L				
	污水处理	总汞	1×10 ⁻⁵ L	1×10 ⁻⁵ L	1×10 ⁻⁵ L	1×10-5L	1×10 ⁻⁵ L	mg/L
	站出口	总镉	3.6×10 ⁻⁴	5.0×10 ⁻⁴	3.0×10 ⁻⁴	2.4×10 ⁻⁴	3.5×10 ⁻⁴	mg/L
		总铅	4×10 ⁻³	3×10 ⁻³	3×10 ⁻³	2×10 ⁻³	3×10 ⁻³	mg/L
		水温	20.7	21.0	21.4	21.1	/	°C
2024. 01.16		pH 值	8.0	8.0	7.9	7.9	7.9~8.0	无量 纲
		SS	49	45	46	47	47	mg/L
	★3 生活废水	COD	192	191	210	205	200	mg/L
	排放口	BOD ₅	86.6	82.8	91.3	87.4	87.0	mg/L
		总磷	5.58	4.37	4.14	4.03	4.53	mg/L
		氨氮	36.6	42.9	40.2	39.1	39.7	mg/L
		动植物油	1.69	1.88	1.80	1.75	1.78	mg/L
备注	测定结	果低于分析方法	检出限时,	报使用的"力	方法检出限"	,并加标志	位 "L"表示	

由表 9.2.1-1 检测结果可知, 2024年 01 月 15 日、01 月 16 日验收检测期间,

渗滤液处理站废水出口:

pH 值: 实测值在 6.7~7.0 范围内;

色度:实测值均为2倍;

COD: 实测值在 8~11mg/L 范围内, 日均值分别为 10mg/L 和 9mg/L;

BOD₅: 实测值在 2.6~3.8mg/L 范围内, 日均值分别为 3.2mg/L 和 3.3mg/L;

SS: 实测值在14mg/L~19mg/L范围内, 日均值分别为17mg/L和16mg/L;

氨氮: 实测值在 0.041mg/L ~ 0.239 mg/L 范围内,日均值分别为 0.087mg/L 和 0.147mg/L;

总氮: 实测值在 26.4~29.2mg/L 范围内, 日均值分别为 27.8mg/L 和 27.5mg/L;

总磷: 实测值在 $0.08 \text{mg/L} \sim 0.13 \text{mg/L}$ 范围内,日均值分别为 0.10 mg/L 和 0.11 mg/L;

总汞:实测值均未检出范围内,检出限为 0.01 µg/L;

镉: 实测值在 $2.2 \times 10^{-4} \text{mg/L} \sim 5.0 \times 10^{-4} \text{mg/L}$ 范围内,日均值分别为 3.1×10^{-1}

⁴mg/L 和 3.5×10⁻⁴mg/L;

铬:实测值均未检出,检出限为 0.004mg/L;

六价铬:实测值均未检出,检出限为 0.004mg/L;

砷:实测值均未检出内,检出限为 0.007mg/L;

铅: 实测值在 0.002mg/L~0.004mg/L 范围内, 日均值分别为 0.002mg/L 和 0..003mg/L;

生活废水排放口:

pH 值: 实测值在 7.9~8.1 范围内;

COD: 实测值在 190~210mg/L 范围内, 日均值分别为 200mg/L 和 200mg/L;

BOD5: 实测值 76.4~91.3mg/L 范围内, 日均值分别为 79.0mg/L 和 87.0mg/L;

SS: 实测值在 41~49mg/L 范围内, 日均值分别为 44mg/L 和 47mg/L;

氨氮: 实测值在 35.5~44.6mg/L 范围内, 日均值分别为 39.3mg/L 和 39.7mg/L;

总磷: 实测值在 4.03~5.87mg/L 范围内, 日均值分别为 5.03mg/L 和 4.53mg/L;

动植物油类:实测值在 1.69~1.88mg/L 范围内, 日均值分别为 1.78mg/L 和 1.78mg/L;

验收检测期间,生活污水出口废水各项检测项目排放浓度均符合《污水综合排放标准》(GB8978-1996)三级排放标准限值要求,其中氨氮符合《污水排入城镇下水道水质标准》(GB/T31962-2015)表1中B级标准。渗滤液处理站废水出口各检测项目浓度均符合《城市污水再生利用工业用水水质》(GB/T 19923-2005)表1中敞开式循环冷却水补水水质要求。

小结:

检测结果表明,验收检测期间,生活废水出口废水各项检测项目排放浓度均符合《污水综合排放标准》(GB 8978-1996)三级排放标准限值要求,其中氨氮符合《污水排入城镇下水道水质标准》(GB/T 31962-2015)表 1 中 B 级标准。 渗滤液处理站废水出口各检测项目浓度均符合《城市污水再生利用工业用水水质》(GB/T 19923-2005)表 1 中敞开式循环冷却水补水水质要求。

9.2.2 废气

本次污染源废气检测结果见表 9.2.2-1~9.2.2-14; 厂界无组织废气检测结果 见表 9.2.2-15。

表 9.2.2-1 固定源废气检测结果一览表 1

检测	检测		TV)24 TP: T_		检测结果		亚丛丛	高
日期	点位	检测因子	检测指标	1	2	3	平均值	度 m
		标干流	益量 (m³/h)	4.15×10 ⁴	4.14×10 ⁴	3.75×10 ⁴	4.01×10 ⁴	
		含氧	(量 (%)	8.1	9.1	8.8	8.7	
		烟泊	且 (°C)	141.7	143.7	142.7	142.7	
		铬及其化合物	实测浓度(mg/m³)	4.67×10 ⁻²	4.44×10 ⁻²	6.21×10 ⁻²	5.11×10 ⁻²	
		锰及其化合物	实测浓度(mg/m³)	5.30×10 ⁻³	3.62×10 ⁻³	3.66×10 ⁻³	4.19×10 ⁻³	
		钴及其化合物	实测浓度(mg/m³)	2.03×10 ⁻⁴	2.98×10 ⁻⁴	1.11×10 ⁻⁴	2.04×10 ⁻⁴	
		镍及其化合物	实测浓度(mg/m³)	3.4×10 ⁻³	1.2×10 ⁻³	2.0×10 ⁻³	2.2×10 ⁻³	
		铜及其化合物	实测浓度(mg/m³)	1.7×10 ⁻³	1.6×10 ⁻³	1.4×10 ⁻³	1.6×10 ⁻³	
		砷及其化合物	实测浓度(mg/m³)	4.71×10 ⁻²	3.96×10 ⁻²	3.09×10 ⁻²	3.92×10 ⁻²	
		锑及其化合物	实测浓度(mg/m³)	1.93×10 ⁻³	1.98×10 ⁻³	1.31×10 ⁻³	1.74×10 ⁻³	
	©1	铅及其化合物	实测浓度(mg/m³)	2.9×10 ⁻³	1.4×10 ⁻³	2.4×10 ⁻³	2.2×10 ⁻³	1
2024. 01.15	1#焚烧 炉排放	I VE V PT V VE V	实测浓度(mg/m³)	0.109	9.41×10 ⁻²	0.104	0.102	0
	П		折算浓度(mg/m³)	8.45×10 ⁻²	7.90×10 ⁻²	8.53×10 ⁻²	8.29×10 ⁻²	0
				/	/	/	4.09×10 ⁻³	
		镉及其化合物	实测浓度(mg/m³)	2.17×10 ⁻⁴	1.12×10 ⁻⁴	7.0×10 ⁻⁵	1.33×10 ⁻⁴	
		铊及其化合物	实测浓度(mg/m³)	6.9×10 ⁻⁵	3.2×10 ⁻⁵	<8×10 ⁻⁶	3.5×10 ⁻⁵	
		镉、铊及其	实测浓度(mg/m³)	2.86×10 ⁻⁴	1.44×10 ⁻⁴	7.0×10 ⁻⁵	1.68×10 ⁻⁴	
		化合物(以	折算浓度(mg/m³)	2.22×10 ⁻⁴	1.21×10 ⁻⁴	5.7×10 ⁻⁵	1.37×10 ⁻⁴	
		Cd+Tl 计)	排放速率(kg/h)	/	/	/	6.74×10 ⁻⁶	
			实测浓度(mg/m³)	<2.5×10 ⁻³	<2.5×10 ⁻³	<2.5×10 ⁻³	<2.5×10 ⁻³	
		表及其化合 物	折算浓度(mg/m³)	<1.9×10 ⁻³	<2.1×10 ⁻³	<2.0×10 ⁻³	<2.0×10 ⁻³	
			排放速率(kg/h)	/	/	/	<1.00×10 ⁻⁴	

续表 9.2.2-1

检测	检测	公川田 7.	松剛松		检测结果							
日期 点位	点位	检测因子	检测指标	1	2	3	平均值					
		标干流	范量(m³/h)	4.17×10 ⁴	4.28×10 ⁴	3.87×10 ⁴	4.11×10 ⁴					
		含氧	〔量(%)	9.0	8.3	8.9	8.7					
		烟	温 (℃)	140.9	143.6	142.8	142.4					
			实测浓度(mg/m³)	1.8	1.6	1.5	1.6					
		颗粒物	折算浓度(mg/m³)	1.5	1.3	1.2	1.3					
			排放速率(kg/h)	/	/	/	6.58×10 ⁻²					
			实测浓度(mg/m³)	4	4	<3	3					
			二氧化硫	折算浓度(mg/m³)	3	3	<3	2				
2024.	◎1 1#焚烧		排放速率(kg/h)	/	/	/	0.123					
01.15	炉排放 口						实测浓度(mg/m³)	78	133	66	92	
			折算浓度(mg/m³)	65	105	55	75					
			排放速率(kg/h)	/	/	/	3.78					
			实测浓度(mg/m³)	<3	<3	<3	<3					
		一氧化碳	折算浓度(mg/m³)	<2	<2	<2	<2					
			排放速率(kg/h)	/	/	/	< 0.123					
			实测浓度(mg/m³)	10.1	8.8	10.3	9.7					
		氯化氢	折算浓度(mg/m³)	8.4	6.9	8.5	7.9					
			排放速率(kg/h)	/	/	/	0.399					

备注 ①焚烧炉基准含氧量为 11%; ②测定结果低于分析方法检出限时, 报使用的"方法检出限" 并加"<"表示

表 9.2.2-2 固定源废气检测结果一览表 2

检测	检测	检测因子	检测指标	检测结果			平均值	高度
日期	日期 点位	1四701日1	1近4织1目470	1	2	3	一均恒	m
		标干流	益量(m³/h)	4.25×10 ⁴	3.78×10 ⁴	4.25×10 ⁴	4.09×10 ⁴	
		含氧量(%)			8.4	7.8	8.7	
		烟泊	⊞ (°C)	150.4	150.9	154.9	152.1	
2024.	◎2 2#焚烧	铬及其化合物	实测浓度(mg/m³)	4.67×10 ⁻²	5.40×10 ⁻²	5.10×10 ⁻²	5.06×10 ⁻²	1 0
01.15	炉排放 口	锰及其化合物	实测浓度(mg/m³)	3.28×10 ⁻³	3.18×10 ⁻³	4.15×10 ⁻³	3.54×10 ⁻³	0
		钴及其化合物	实测浓度(mg/m³)	7.7×10 ⁻⁵	8.8×10 ⁻⁵	9.0×10 ⁻⁵	8.5×10 ⁻⁵	_
		镍及其化合物	实测浓度(mg/m³)	1.3×10 ⁻³	1.6×10 ⁻³	1.5×10 ⁻³	1.5×10 ⁻³	_
		铜及其化合物	实测浓度(mg/m³)	1.5×10 ⁻³	1.5×10 ⁻³	1.3×10 ⁻³	1.4×10 ⁻³	

续表 9.2.2-2

检测	检测	松洞田マ	松加松仁		检测结果		平均值
日期	点位	检测因子	检测指标	1	2	3	干均但
		砷及其化合物	实测浓度(mg/m³)	3.45×10 ⁻²	2.99×10 ⁻²	3.28×10 ⁻²	3.24×10 ⁻²
		锑及其化合物	实测浓度(mg/m³)	1.73×10 ⁻³	1.62×10 ⁻³	1.35×10 ⁻³	1.57×10 ⁻³
		铅及其化合物	实测浓度(mg/m³)	1.3×10 ⁻³	1.3×10 ⁻³	2.1×10 ⁻³	1.6×10 ⁻³
		铬、砷、铅、	实测浓度(mg/m³)	9.04×10 ⁻²	9.32×10 ⁻²	9.43×10 ⁻²	9.27×10 ⁻²
		钴、锑、铜、 锰、镍及其化	折算浓度(mg/m³)	8.07×10 ⁻²	7.40×10 ⁻²	7.15×10 ⁻²	7.54×10 ⁻²
		合物(以 Sb+As +Pb+Cr+Co+Cu +Mn+Ni 计)	排放速率(kg/h)	/	/	/	3.79×10 ⁻³
			实测浓度(mg/m³)	6.1×10 ⁻⁵	5.9×10 ⁻⁵	4.6×10 ⁻⁵	5.5×10 ⁻⁵
		铊及其化合物	实测浓度(mg/m³)	<8×10 ⁻⁶	1.1×10 ⁻⁵	<8×10 ⁻⁶	<8×10 ⁻⁶
		镉、铊及其	实测浓度(mg/m³)	6.1×10 ⁻⁵	7.0×10 ⁻⁵	4.6×10 ⁻⁵	5.5×10 ⁻⁵
			折算浓度(mg/m³)	5.4×10 ⁻⁵	5.6×10 ⁻⁵	3.5×10 ⁻⁵	4.5×10 ⁻⁵
		Cd+Tl 计)	排放速率(kg/h)	/	/	/	2.25×10 ⁻⁶
	玉乃甘孙仝	实测浓度(mg/m³)	<2.5×10 ⁻³	<2.5×10 ⁻³	<2.5×10 ⁻³	<2.5×10 ⁻³	
	表及其化合 物	折算浓度(mg/m³)	<2.2×10 ⁻³	<2.0×10 ⁻³	<1.9×10 ⁻³	<2.0×10 ⁻³	
	120	排放速率(kg/h)	/	/	/	<1.02×10 ⁻⁴	
2024	©2	标干流	量 (m³/h)	4.64×10 ⁴	4.17×10 ⁴	3.85×10 ⁴	4.22×10 ⁴
2024. 01.15	2#焚烧 炉排放	含氧	量(%)	8.6	8.7	7.2	8.2
		烟温	₫ (°C)	149.1	149.5	149.8	149.5
			实测浓度(mg/m³)	<1.0	<1.0	<1.0	<1.0
		颗粒物	折算浓度(mg/m³)	< 0.8	< 0.8	< 0.7	< 0.8
			排放速率(kg/h)	/	/	/	<4.22×10 ⁻
			实测浓度(mg/m³)	18	<3	<3	7
		二氧化硫	折算浓度(mg/m³)	14	<2	<2	6
			排放速率(kg/h)	/	/	/	< 0.295
			实测浓度(mg/m³)	45	52	83	60
		氮氧化物	折算浓度(mg/m³)	36	42	60	47
			排放速率(kg/h)	/	/	/	2.53
			实测浓度(mg/m³)	<3	<3	<3	<3
		一氧化碳	折算浓度(mg/m³)	<2	<2	<2	<2
			排放速率(kg/h)	/	/	/	< 0.127
			实测浓度(mg/m³)	5.1	4.3	4.4	4.6
		氯化氢	折算浓度(mg/m³)	4.1	3.5	3.2	3.6
			排放速率(kg/h)	/	/	/	0.194

①焚烧炉基准含氧量为11%;②测定结果低于分析方法检出限时,报使用的"方法检出限",并加"<"表示

表 9.2.2-3 固定源废气检测结果一览表 3

检测	检测	检测因子	检测指标		检测结果		平均值	高度
日期	点位	極侧囚丁	个过 <i>中</i> 则1日7小	1	2	3	一 下均值	m
		标干	流量(m³/h)	1.46×10 ³	1.59×10 ³	1.56×10 ³	1.54×10 ³	
	◎3 飞灰仓	灯	国温 (℃)	38.5	38.9	40.8	39.4	21
	排气筒	颗粒物	实测浓度(mg/m³)	2.0	2.1	2.2	2.1	21
	, ,	木火木工 1 70	排放速率(kg/h)	/	/	/	3.23×10 ⁻³	
		标干	流量 (m³/h)	312	356	319	329	
	◎4 石灰仓 排气筒 1	灯	国温 (℃)	21.9	23.6	24.3	23.3	
			实测浓度(mg/m³)	<1.0	<1.0	<1.0	<1.0	15
			排放速率(kg/h)	/	/	/	<3.29×10 ⁻	
	◎5 石灰仓 排气筒 2	标干流量(m³/h)		100	67	67	78	
2024.01.15		灯	国温 (℃)	27.2	27.4	27.0	27.2	18
			实测浓度(mg/m³)	3.9	3.0	3.2	3.4	10
			排放速率(kg/h)	/	/	/	2.65×10 ⁻⁴	
	© 6	标干	流量 (m³/h)	340	332	327	333	
	活性炭	灯	国温 (℃)	19.9	20.5	20.8	20.4	15
	仓排气	颗粒物	实测浓度(mg/m³)	1.8	1.5	1.8	1.7	13
	筒	A央イエ1/0	排放速率(kg/h)	/	/	/	5.66×10 ⁻⁴	
		标干	流量 (m³/h)	721	871	935	842	
	©7	灯	国温 (℃)	24.2	24.6	24.6	24.5	
	水泥仓排气管	merch of t	实测浓度(mg/m³)	<1.0	<1.0	<1.0	<1.0	15
	排气筒	筒 颗粒物 -	排放速率(kg/h)	/	/	/	<8.42×10 ⁻	
备注		测定结果低	氏于分析方法检出限时	十,报使用的	的"方法检出	限",并加"	<"表示	

表 9.2.2-4 固定源废气检测结果一览表 4

检测	检测	-	松测松 岩		检测结果		亚拉法	高度
日期	点位	检测因子	检测指标	1	2	3	平均值	及 m
		标干流	E量(m³/h)	3.99×10 ⁴	4.15×10 ⁴	4.04×10 ⁴	4.06×10 ⁴	
	_	含氧	【量(%)	9.3	8.3	8.6	8.7	
		烟泊	⊞ (°C)	145.2	143.3	143.7	144.1	
		铬及其化合物	实测浓度(mg/m³)	5.40×10 ⁻²	3.28×10 ⁻²		4.67×10 ⁻²	
	◎1 1#焚烧 炉排放	锰及其化合物	实测浓度(mg/m³)	8.66×10 ⁻³	4.64×10 ⁻³	2.42×10 ⁻³	5.24×10 ⁻³	1
2024. 01.16		钴及其化合物	实测浓度(mg/m³)	3.78×10 ⁻⁴	2.04×10 ⁻⁴	9.8×10 ⁻⁵	2.27×10 ⁻⁴	0
	口	镍及其化合物	实测浓度(mg/m³)	5.2×10 ⁻³	2.8×10 ⁻³	1.6×10 ⁻³	3.2×10 ⁻³	0
		铜及其化合物	实测浓度(mg/m³)	6.2×10 ⁻³	3.4×10 ⁻³	1.69×10 ⁻²	8.8×10 ⁻³	
		砷及其化合物	实测浓度(mg/m³)	8.55×10 ⁻²	4.72×10 ⁻²	2.26×10 ⁻²	5.18×10 ⁻²	
		锑及其化合物	实测浓度(mg/m³)	2.67×10 ⁻³	1.46×10 ⁻³	1.18×10 ⁻³	1.77×10 ⁻³	
		铅及其化合物	实测浓度(mg/m³)	2.3×10 ⁻³	1.3×10 ⁻³	1.2×10 ⁻³	1.6×10 ⁻³	

续表 9.2.2-4

检测	检测	检测因子	松洞比异		检测结果		平均值
日期	点位	極侧囚丁	检测指标	1	2	3	一一以但
		铬、砷、铅、 钴、锑、铜、	实测浓度(mg/m³)	0.165	9.38×10 ⁻²	9.92×10 ⁻²	0.119
		锰、镍及其化	折算浓度(mg/m³)	0.141	7.38×10 ⁻²	8.00×10 ⁻²	9.67×10 ⁻²
		合物(以 Sb+ As+Pb+Cr+Co+ Cu+Mn+Ni 计)	排放速率(kg/h)	/	/	/	4.83×10 ⁻³
		镉及其化合物	实测浓度(mg/m³)	6.8×10 ⁻⁵	1.9×10 ⁻⁵	2.4×10 ⁻⁵	3.7×10 ⁻⁵
		铊及其化合物	实测浓度(mg/m³)	<8×10 ⁻⁶	<8×10 ⁻⁶	<8×10 ⁻⁶	<8×10 ⁻⁶
		镉、铊及其	实测浓度(mg/m³)	6.8×10 ⁻⁵	1.9×10 ⁻⁵	2.4×10 ⁻⁵	3.7×10 ⁻⁵
	化合物(以	折算浓度(mg/m³)	5.8×10 ⁻⁵	1.5×10 ⁻⁵	1.9×10 ⁻⁵	3.0×10 ⁻⁵	
		Cd+Tl 计)	排放速率(kg/h)	/	/	/	1.50×10 ⁻⁶
			实测浓度(mg/m³)	<2.5×10 ⁻³	<2.5×10 ⁻³	<2.5×10 ⁻³	<2.5×10 ⁻³
		汞及其化合 物	折算浓度(mg/m³)	<2.1×10 ⁻³	<2.0×10 ⁻³	<2.0×10 ⁻³	<2.0×10 ⁻³
		123	排放速率(kg/h)	/	/	/	<1.02×10 ⁻⁴
		标干流	臣量(m³/h)	4.49×10 ⁴	4.03×10 ⁴	4.25×10 ⁴	4.26×10 ⁴
	© 1	含氧	(量 (%)	9.0	8.8	8.4	8.7
2024.	1#焚烧	烟泊	眉(℃)	142.5	143.6	140.7	142.3
1.16	炉排放 口	颗粒物	实测浓度(mg/m³)	<1.0	<1.0	<1.0	<1.0
	, ,		折算浓度(mg/m³)	< 0.8	< 0.8	< 0.8	< 0.8
			排放速率(kg/h)	/	/	/	<4.26×10 ⁻²
			实测浓度(mg/m³)	<3	3	<3	<3
		二氧化硫	折算浓度(mg/m³)	<3	2	<2	<2
			排放速率(kg/h)	/	/	/	<0.128
			实测浓度(mg/m³)	113	99	71	94
		氮氧化物	折算浓度(mg/m³)	94	81	56	76
			排放速率(kg/h)	/	/	/	4.00
			实测浓度(mg/m³)	<3	<3	<3	<3
		一氧化碳	折算浓度(mg/m³)	<2	<2	<2	<2
			排放速率(kg/h)	/	/	/	<0.128
			实测浓度(mg/m³)	9.5	8.8	9.5	9.3
		氯化氢	折算浓度(mg/m³)	7.9	7.2	7.5	7.6
			排放速率(kg/h)	/	/	/	0.396

表 9.2.2-5 固定源废气检测结果一览表 5

检测	检测	- 大畑ロフ	4人,201.44,4二.		检测结果		亚护体	高
日期	点位	检测因子	检测指标	1	2	3	平均值	度 m
		标干流	琵量 (m³/h)	4.56×10 ⁴	4.40×10 ⁴	4.82×10 ⁴	4.59×10 ⁴	
		含氧	(量 (%)	9.0	8.9	9.5	9.1	
		烟泊	⊞ (°C)	145.1	147.6	150.8	147.8	
		铬及其化合物	实测浓度(mg/m³)	1.53×10 ⁻²	1.50×10 ⁻²	1.06×10 ⁻²	1.36×10 ⁻²	
		锰及其化合物	实测浓度(mg/m³)	1.25×10 ⁻²	1.30×10 ⁻²	7.01×10 ⁻³	1.08×10 ⁻²	
		钴及其化合物	实测浓度(mg/m³)	2.46×10 ⁻⁴	1.01×10 ⁻³	1.35×10 ⁻⁴	4.64×10 ⁻⁴	
		镍及其化合物	实测浓度(mg/m³)	2.3×10 ⁻³	1.22×10 ⁻²	1.3×10 ⁻³	5.3×10 ⁻³	
		铜及其化合物	实测浓度(mg/m³)	4.0×10 ⁻³	2.39×10 ⁻²	3.8×10 ⁻³	1.06×10 ⁻²	
	-	砷及其化合物	实测浓度(mg/m³)	9.08×10 ⁻²	5.49×10 ⁻²	4.93×10 ⁻²	6.50×10 ⁻²	
		锑及其化合物	实测浓度(mg/m³)	5.14×10 ⁻³	4.01×10 ⁻³	3.95×10 ⁻³	4.37×10 ⁻³	
	©2	铅及其化合物	实测浓度(mg/m³)	9.5×10 ⁻³	9.6×10 ⁻³	3.7×10 ⁻³	7.6×10 ⁻³	
2024. 01.16	2#焚烧 炉排放	格、砷、铅、 钴、锑、铜、 锰、镍及其化 合物(以 Sb+As+Pb+Cr+ Co+Cu+Mn+Ni 计)	实测浓度(mg/m³)	0.140	0.134	7.98×10 ⁻²	0.118	100
	口		折算浓度(mg/m³)	0.117	0.111	6.94×10 ⁻²	9.59×10 ⁻²	
				/	/	/	5.42×10 ⁻³	
		镉及其化合物	实测浓度(mg/m³)	1.44×10 ⁻⁴	2.10×10 ⁻⁴	1.33×10 ⁻⁴	1.62×10 ⁻⁴	
		铊及其化合物	实测浓度(mg/m³)	3.2×10 ⁻⁵	3.6×10 ⁻⁵	1.9×10 ⁻⁵	2.9×10 ⁻⁵	
		镉、铊及其	实测浓度(mg/m³)	1.8×10 ⁻⁴	2.5×10 ⁻⁴	1.5×10 ⁻⁴	1.9×10 ⁻⁴	
		化合物(以	折算浓度(mg/m³)	1.5×10 ⁻⁴	2.1×10 ⁻⁴	1.3×10 ⁻⁴	1.6×10 ⁻⁴	
		Cd+Tl 计)	排放速率(kg/h)	/	/	/	8.72×10 ⁻⁶	
			实测浓度(mg/m³)	<2.5×10 ⁻³	<2.5×10 ⁻³	<2.5×10 ⁻³	<2.5×10 ⁻³	
		汞及其化合 物	折算浓度(mg/m³)	<2.1×10 ⁻³	<2.1×10 ⁻³	<2.2×10 ⁻³	<2.1×10 ⁻³	
			排放速率(kg/h)	/	/	/	<1.15×10 ⁻⁴	

续表 9.2.2-5

检测	检测	4人3回口フ	+A \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		检测结果		亚丛法	
日期	点位	检测因子	检测指标	1	2	3	平均值	
		标干流	充量(m³/h)	4.52×10 ⁴	4.91×10 ⁴	4.74×10 ⁴	4.72×10 ⁴	
		含氧	〔量(%)	8.6	8.2	9.1	8.6	
		烟	温 (℃)	143.3	148.6	149.3	147.1	
			实测浓度(mg/m³)	<1.0	<1.0	<1.0	<1.0	
⊚2		颗粒物	折算浓度(mg/m³)	< 0.8	< 0.8	<0.8	<0.8	
			排放速率(kg/h)	/	/	/	<4.72×10 ⁻²	
			实测浓度(mg/m³)	<3	3	4	3	
	@2	二氧化硫	折算浓度(mg/m³)	<2	2	3	2	
2024.	2#焚烧		排放速率(kg/h)	/	/	/	0.142	
01.16	炉排放 口	文	实测浓度(mg/m³)	58	50	49	52	
	Н	氮氧化物	折算浓度(mg/m³)	47	39	41	42	
			排放速率(kg/h)	/	/	/	2.45	
			实测浓度(mg/m³)	<3	<3	5	<3	
		一氧化碳	折算浓度(mg/m³)	<2	<2	4	<2	
			排放速率(kg/h)	/	/	/	< 0.142	
			实测浓度(mg/m³)	6.5	6.6	6.9	6.7	
		氯化氢	折算浓度(mg/m³)	5.2	5.2	5.8	5.4	
		排放速率(kg/h)	/	/	/	0.316		

表 9.2.2-6 固定源废气检测结果一览表 6

检测	检测	检测因子	检测指标		检测结果		平均值	高度
日期	点位	位侧口 1	位 7 9月1日7小	1	2	3	一月四日	m
		标干流量 (m³/h)		1.57×10 ³	1.69×10 ³	1.87×10 ³	1.71×10 ³	
	◎3 飞灰仓	炬	周温 (℃)	38.3	39.6	40.1	39.3	21
	排气筒		实测浓度(mg/m³)	1.3	1.5	1.3	1.4	21
			排放速率(kg/h)	/	/	/	2.39×10 ⁻³	
	◎4 石灰仓 排气筒 1	标干	流量 (m³/h)	533	720	625	626	
2024.01.16		烟]温(℃)	19.7	21.2	24.5	21.8	1.5
2024.01.10		颗粒物	实测浓度(mg/m³)	2.7	3.1	4.4	3.4	15
		秋粒物	排放速率(kg/h)	/	/	/	2.13×10 ⁻³	
		标干	流量 (m³/h)	174	129	164	156	
	◎5 石灰仓 - 排气筒 2	烟]温(℃)	28.9	28.9	28.6	28.8	10
		排气筒 2 颗粒物 实	实测浓度(mg/m³)	<1.0	<1.0	<1.0	<1.0	18
			排放速率(kg/h)	/	/	/	<1.56×10 ⁻⁴	

续表 9.2.2-6

检测	检测	払 測ロフ	松测长壮		检测结果		亚拉佐	高度
日期	点位	检测因子	检测指标	1	2	3	平均值	m
	©6	标干	流量(m³/h)	369	372	340	360	
	活性炭	炬	国温 (℃)	16.4	17.8	18.9	17.7	15
	仓排气 筒	颗粒物	实测浓度(mg/m³)	<1.0	<1.0	<1.0	<1.0	15
2024.01.16	lri)	术贝朴丛书分	排放速率(kg/h)	/	/	/	<3.60×10 ⁻⁴	
2024.01.16		标干	流量 (m³/h)	855	956	919	910	
	◎7 水泥仓	炬	周温 (℃)	18.7	18.5	19.2	18.8	15
	排气筒	颗粒物	实测浓度(mg/m³)	<1.0	<1.0	<1.0	<1.0] 13
		秋松初	排放速率(kg/h)	/	/	/	<9.10×10 ⁻⁴	
	© 8	标干	流量 (m³/h)	1.66×10 ⁴	1.69×10 ⁴	1.77×10 ⁴	1.71×10 ⁴	
	飞灰暂 存库处	炬	周温 (℃)	14.0	15.6	17.3	15.6	,
	理设施	颗粒物	实测浓度(mg/m³)	1.8	1.5	1.6	1.6	- /
2024.01.17	进口	本 央不立 1/2	排放速率(kg/h)	/	/	/	/	
2024.01.17	⊚9	标干	流量 (m³/h)	1.60×10 ⁴	1.55×10 ⁴	1.58×10 ⁴	1.58×10 ⁴	
	飞灰暂 存库处	炬	周温 (℃)	13.3	14.5	17.1	15.0	10
	理设施	野部松州	实测浓度(mg/m³)	<1.0	<1.0	<1.0	<1.0	10
	出口		排放速率(kg/h)	/	/	/	<1.58×10 ⁻²	
备注		测定结果低	氏于分析方法检出限时	十,报使用的	的"方法检出	限",并加"	<"表示	_

表 9.2.2-7 固定源废气检测结果一览表 7

检测	检测	사제미국	LA Noi Lie L		检测结果		日上仕	高
日期	点位	检测因子	检测指标	1	2	3	最大值	度 m
	◎10 渗滤 液处	标干流量 (m³/h)		3.56×10^{3}	3.83×10 ³	3.84×10 ³	3.74×10 ³	
		均	因温 (℃)	25.8	24.4	27.0	25.7	
	理站 废气	硫化氢	实测浓度(mg/m³)	0.142	5.64×10 ⁻²	6.92×10 ⁻²	0.142	/
	及 处理	氨	实测浓度(mg/m³)	7.28	5.17	5.59	7.28	
	设施 进口	臭气浓度	实测浓度(无量 纲)	4786	3548	4168	4786	
	©11	标干	流量 (m³/h)	3.65×10^3	4.17×10 ³	4.51×10 ³	4.11×10 ³	
2024.01.17		均	因温 (℃)	29.4	28.2	30.2	29.3	
	渗滤	硫化氢	实测浓度(mg/m³)	4.18×10 ⁻²	2.00×10 ⁻²	1.86×10 ⁻²	/	
	液处 理站	圳心公	排放速率(kg/h)	1.53×10 ⁻⁴	8.34×10 ⁻⁵	8.39×10 ⁻⁵	1.53×10 ⁻⁴	
	废气	氨	实测浓度(mg/m³)	2.31	1.48	2.12	/	15
	处理 设施	氨	排放速率(kg/h)	8.43×10 ⁻³	6.17×10 ⁻³	9.56×10 ⁻³	9.56×10 ⁻³	
	出口	臭气浓度	实测浓度(无量 纲)	1995	1513	1737	1995	
			排放速率 (/)	/	/	/	/	

表 9.2.2-8 固定源废气检测结果一览表 8

检测	检测	- - - - - - -	4人河山北北二		检测结果		見 十 <i>は</i>	高
日期	点位	检测因子	检测指标	1	2	3	最大值	度 m
	⊚12	标干	流量(m³/h)	1.44×10 ⁴	1.38×10 ⁴	1.11×10 ⁴	1.31×10 ⁴	
	餐厨 垃圾	力	因温 (℃)	18.3	20.2	21.5	20.0	
	事故	硫化氢	实测浓度(mg/m³)	4.48×10 ⁻²	3.05×10 ⁻²	3.47×10 ⁻²	4.48×10 ⁻²	/
	处理	氨	实测浓度(mg/m³)	4.37	2.19	3.91	4.37	
	设施 进口	臭气浓度	实测浓度(无量 纲)	3548	2691	3090	3548	
		标干	流量 (m³/h)	1.55×10 ⁴	1.31×10 ⁴	1.04×10 ⁴	1.30×10 ⁴	
2024.01.17		火	因温 (℃)	11.7	10.8	10.7	11.1	
	◎13 餐厨	硫化氢	实测浓度(mg/m³)	2.93×10 ⁻²	1.04×10 ⁻²	1.81×10 ⁻²	/	
	垃圾	狮 化桑	排放速率(kg/h)	4.54×10 ⁻⁴	1.36×10 ⁻⁴	1.88×10 ⁻⁴	4.54×10 ⁻⁴	
	事故 处理	氨	实测浓度(mg/m³)	1.96	1.24	1.58	/	45
	设施	安(排放速率(kg/h)	3.04×10 ⁻²	1.62×10 ⁻²	1.64×10 ⁻²	3.04×10 ⁻²	
	出口	臭气浓度	实测浓度(无量 纲)	1995	1122	1737	1995	
		2 ,2	排放速率 (/)	/	/	/	/	

表 9.2.2-9 固定源废气检测结果一览表 9

检测	检测	松 测田 Z	孙加州		检测结果		見上法	高
日期	点位	检测因子	检测指标	1	2	3	最大值	度 m
	©14	标干	流量(m³/h)	8.86×10 ⁴	7.23×10 ⁴	7.61×10 ⁴	7.90×10 ⁴	
	应急	均	国温 (℃)	21.2	21.0	22.3	21.5	
	除臭 处理	硫化氢	实测浓度(mg/m³)	5.94×10 ⁻²	5.65×10 ⁻²	5.29×10 ⁻²	5.94×10 ⁻²	/
	没施	氨	实测浓度(mg/m³)	6.15	6.35	5.83	6.35	
	进口	^{进口} 臭气浓度	实测浓度(无量 纲)	4168	4168	3548	4168	
		标干	流量(m³/h)	9.61×10 ⁴	8.78×10 ⁴	8.29×10 ⁴	8.89×10 ⁴	
2024.01.17		均	国温 (℃)	22.7	19.7	20.3	20.9	
	©15	硫化氢	实测浓度(mg/m³)	3.05×10 ⁻²	2.98×10 ⁻²	2.67×10 ⁻²	/	
	应急 除臭	圳心心之	排放速率(kg/h)	2.93×10 ⁻³	2.62×10 ⁻³	2.21×10 ⁻³	2.93×10 ⁻³	
	处理	氨	实测浓度(mg/m³)	1.04	1.07	1.35	/	15
	设施 出口	氨	排放速率(kg/h)	9.99×10 ⁻²	9.39×10 ⁻²	0.112	0.112	
		臭气浓度	实测浓度(无量 纲)	1122	1122	1513	1513	
			排放速率(/)	/	/	/	/	

表 9.2.2-10 固定源废气检测结果一览表 10

检测	检测				检测结果		平均值	高度				
日期	点位	位例[0]	12年7月1日17小	1	2	3	1均值	m				
	©8	标干	流量(m³/h)	1.68×10 ⁴	1.52×10 ⁴	1.50×10 ⁴	1.57×10 ⁴					
	飞灰暂存	7.]温(℃)	14.0	15.6	17.3	15.6	,				
	库处理设		实测浓度(mg/m³)	1.7	1.3	1.4	1.5	/				
2024.01.1	施进口		排放速率(kg/h)	/	/	/	/					
8	©9	标干	流量(m³/h)	1.58×10 ⁴	1.60×10 ⁴	1.54×10 ⁴	1.57×10 ⁴					
		飞灰暂存	飞灰暂存	飞灰暂存	飞灰暂存	炬	温 (℃)	13.6	14.0	16.5	14.7	10
	库处理设	颗粒物	实测浓度(mg/m³)	<1.0	<1.0	<1.0	<1.0	10				
	施出口	积粒物	排放速率(kg/h)	/	/	/	<1.57×10 ⁻²					
备注	测定结果低于分析方法检出限时,报使用的"方法检出限",并加"<"表示											

表 9.2.2-11 固定源废气检测结果一览表 11

检测	检测	松瀬田 マ	+V 201 +V +_		检测结果		目上法	高
日期	点位	检测因子	检测指标	1	2	3	最大值	度 m
	◎10 渗滤	标干	流量 (m³/h)	3.64×10^{3}	3.73×10 ³	3.70×10^{3}	3.69×10 ³	
	疹 [©]	火	因温 (℃)	27.3	27.3	28.1	27.6	
	理站 废气	硫化氢	实测浓度(mg/m³)	4.10×10 ⁻²	4.14×10 ⁻²	3.50×10 ⁻²	4.14×10 ⁻²	/
	处理		实测浓度(mg/m³)	3.19	2.63	2.82	3.19	
	设施 进口	臭气浓度	实测浓度(无量 纲)	3090	3090	2691	3090	
		标干	流量 (m³/h)	4.13×10 ³	4.08×10 ³	4.05×10 ³	4.09×10 ³	
2024.01.18	©11	火	因温 (℃)	29.7	29.7	31.1	30.2	
	渗滤	硫化氢	实测浓度(mg/m³)	2.94×10 ⁻²	3.06×10 ⁻²	2.04×10 ⁻²	/	
	液处 理站	圳心之	排放速率(kg/h)	1.21×10 ⁻⁴	1.25×10 ⁻⁴	8.26×10 ⁻⁵	1.25×10 ⁻⁴	
	废气	氨	实测浓度(mg/m³)	1.02	1.10	0.98	/	15
	处理 设施 出口	女(排放速率(kg/h)	4.21×10 ⁻³	4.49×10 ⁻³	3.97×10 ⁻³	4.49×10 ⁻³	
		臭气浓度	实测浓度(无量 纲)	1737	1513	1122	1737	
		夹气冰及	排放速率 (/)	/	/	/	/	

表 9.2.2-12 固定源废气检测结果一览表 12

检测	检测	松 测田 Z	+人 /回 +匕 +二		检测结果		見上法	高
日期	点位	检测因子	检测指标	1	2	3	最大值	度 m
	◎12 标干流量(m³/h)		1.10×10 ⁴	1.11×10 ⁴	1.12×10 ⁴	1.11×10 ⁴		
	餐厨 垃圾	烟温 (℃)		21.8	22.7	22.8	22.4	
2024.01.18	事故	硫化氢	实测浓度(mg/m³)	3.84×10 ⁻²	3.51×10 ⁻²	3.34×10 ⁻²	3.84×10 ⁻²	/
<u>处理</u> 设施	氨	实测浓度(mg/m³)	1.85	2.15	2.16	2.16		
	进口	臭气浓度	实测浓度 (无量纲)	1995	2691	2290	2691	

续表 9.2.2-12

检测	检测	松 测田 Z	₩ ₩ ₩		检测结果		最大值	高度
日期	点位	检测因子	检测指标	1	2	3	取入徂	度 m
		标干	流量(m³/h)	1.03×10 ⁴	1.04×10 ⁴	1.03×10 ⁴	1.03×10 ⁴	
			因温 (℃)	21.4	21.1	21.2	21.2	
	◎13 餐厨	厨 硫化氢	实测浓度(mg/m³)	2.31×10 ⁻²	2.42×10 ⁻²	2.33×10 ⁻²	/	
2024.01.18	垃圾 事故		排放速率(kg/h)	2.38×10 ⁻⁴	2.52×10 ⁻⁴	2.40×10 ⁻⁴	2.52×10 ⁻⁴	4.5
2024.01.18	处理	氨	实测浓度(mg/m³)	1.09	1.31	1.02	/	45
	设施 出口	氨	排放速率(kg/h)	1.12×10 ⁻²	1.36×10 ⁻²	1.05×10 ⁻²	1.36×10 ⁻²	
		臭气浓度	实测浓度 (无量纲)	977	1513	1122	1513	
		天(水及	排放速率 (/)	/	/	/	/	

表 9.2.2-13 固定源废气检测结果一览表 13

检测	检测				检测结果			高	
日期	点位	检测因子	检测指标	1	2	3	最大值	度 m	
	©14	标干	流量 (m³/h)	7.85×10 ⁴	7.89×10 ⁴	8.68×10 ⁴	8.14×10 ⁴		
	应急	火	因温 (℃)	23.6	23.4	23.1	23.4		
	除臭 处理	硫化氢	实测浓度(mg/m³)	0.128	0.164	0.123	0.164	/	
	设施	氨	实测浓度(mg/m³)	8.62	7.65	8.03	8.62		
	进口	臭气浓度	实测浓度 (无量纲)	4786	3548	4168	4786		
		标干	流量(m³/h)	9.28×10 ⁴	8.30×10 ⁴	9.33×10 ⁴	8.97×10 ⁴		
2024.01.18		火	因温 (℃)	21.9	20.6	23.1	21.9		
	◎15 应急	硫化氢	实测浓度(mg/m³)	5.20×10 ⁻²	4.21×10 ⁻²	5.70×10 ⁻²	/		
	除臭	狮化型	排放速率(kg/h)	4.83×10 ⁻³	3.49×10 ⁻³	5.32×10 ⁻³	5.32×10 ⁻³	1.5	
	处理	氨	实测浓度(mg/m³)	1.96	1.94	2.15	/	15	
1	设施 出口	安(排放速率(kg/h)	0.182	0.161	0.201	0.201		
	шн	自与沙庇	实测浓度 (无量纲)	1737	1513	1737	1737		
		臭气浓度	排放速率 (/)	/	/		/		

表 9.2.2-14 污染源二噁英监测结果

采样时间	点位名称	样品编号	检测结果(ng-TEQ/Nm³)
		FXK2401500101	0.092
2024-01-15		FXK2401500102	0.079
_	 - 1#焚烧炉排放口	FXK2401500103	0.017
	1#火炕灯1#从口	FXK2401500104	0.016
2024-01-16		FXK2401500105	0.015
		FXK2401500106	0.078
		FXK2401500201	0.0068
2024-01-17		FXK2401500202	0.010
	 - 2#焚烧炉排放口	FXK2401500203	0.0080
	2#炎流炉1#以口	FXK2401500204	0.0072
2024-01-18		FXK2401500205	0.0078
		FXK2401500206	0.0073

由表 9.2.2-1、9.2.2-2、9.2.2-4、9.2.2-5、9.2.2-14 检测结果可知,2024年 01月 15日~01月 18日验收检测期间,(焚烧炉出口)废气各项检测指标排放浓度均符合《生活垃圾焚烧污染控制标准》(GB 18485-2014)表 4规定的排放限值要求,氮氧化物符合(DB35/1976-2021)《生活垃圾焚烧氮氧化物排放标准》表2规定的排放限值。

由表 9.2.2-3、9.2.2-6、9.2.2-10 检测结果可知,验收检测期间,飞灰仓排气筒、石灰仓排气筒、活性炭仓排气筒、水泥仓排气筒、飞灰暂存库处理设施出口颗粒物均符合《大气污染物综合排放标准》(GB 16297-1996)表 2 规定的排放限值。

由表 9.2.2-7、9.2.2-8、9.2.2-9、9.2.2-11、9.2.2-12、9.2.2-13 检测结果可知,.验收检测期间,渗滤液处理站废气处理设施出口、餐厨垃圾事故处理设施出口、应急除臭处理设施出口废气各项检测指标排放量均符合《恶臭污染物排放标准》(GB 14554-93)表 2标准。

小结:

检测结果表明,验收检测期间,(焚烧炉出口)废气各项检测指标排放浓度均符合《生活垃圾焚烧污染控制标准》(GB 18485-2014)表 4 规定的排放限值要求,氮氧化物符合(DB 35/1976-2021)《生活垃圾焚烧氮氧化物排放标准》表 2 规定的排放限值;飞灰仓排气筒、石灰仓排气筒、活性炭仓排气筒、水泥仓排气筒、飞灰暂存库处理设施出口颗粒物均符合《大气污染物综合排放标准》(GB 16297-1996)表 2 规定的排放限值;渗滤液处理站废气处理设施出口、餐厨垃圾事故处理设施出口、应急除臭处理设施出口废气各项检测指标排放量均符合《恶臭污染物排放标准》(GB 14554-93)表 2 标准。

表 9.2.2-15 厂界无组织废气检测结果一览表

LA 201 E1 ###	检测		风速	IV MILLI 그		检测	点位	
检测日期	频次	风向	m/s	检测因子	01	O2	O3	04
				颗粒物(mg/m³)	0.183	0.218	0.326	0.216
				氨(mg/m³)	0.01	0.11	0.07	0.06
	1	NW	1.2	硫化氢(mg/m³)	< 1×10 ⁻³	5×10 ⁻³	2×10 ⁻³	2×10 ⁻³
				臭气浓度 (无量纲)	< 10	12	11	11
				颗粒物(mg/m³)	0.179	0.240	0.315	0.211
				氨(mg/m³)	0.03	0.13	0.07	0.08
	2	NW	1.3	硫化氢(mg/m³)	2×10 ⁻³	7×10 ⁻³	3×10 ⁻³	4×10 ⁻³
2024.01.15				臭气浓度 (无量纲)	11	14	12	13
2024.01.15				颗粒物(mg/m³)	0.206	0.238	0.299	0.222
	2	3.733.7	1.2	氨(mg/m³)	0.02	0.14	0.09	0.07
	3	NW	1.3	硫化氢(mg/m³)	1×10 ⁻³	7×10 ⁻³	4×10 ⁻³	4×10 ⁻³
			•	臭气浓度 (无量纲)	< 10	15	13	12
				颗粒物(mg/m³)	0.197	0.266	0.338	0.241
	,	3.1337		氨(mg/m³)	0.02	0.10	0.08	0.06
	4	NW	1.4	硫化氢(mg/m³)	2×10 ⁻³	5×10 ⁻³	3×10 ⁻³	5×10 ⁻³
				臭气浓度 (无量纲)	< 10	11	12	11
			1.2	颗粒物(mg/m³)	0.190	0.229	0.318	0.204
	1	GE.		氨(mg/m³)	0.02	0.06	0.05	0.09
	1	SE	1.3	硫化氢(mg/m³)	< 1×10 ⁻³	2×10 ⁻³	2×10 ⁻³	4×10 ⁻³
				臭气浓度 (无量纲)	< 10	11	11	12
				颗粒物(mg/m³)	0.195	0.250	0.314	0.220
	2	GE.	1.5	氨(mg/m³)	0.01	0.08	0.06	0.11
	2	SE	1.5	硫化氢(mg/m³)	1×10 ⁻³	5×10 ⁻³	3×10 ⁻³	6×10 ⁻³
2024.01.16				臭气浓度 (无量纲)	< 10	12	12	13
2024.01.16				颗粒物(mg/m³)	0.185	0.212	0.313	0.212
	2	CCE	1.5	氨(mg/m³)	< 0.01	0.08	0.05	0.10
	3	SSE	1.5	硫化氢(mg/m³)	< 1×10 ⁻³	4×10 ⁻³	2×10 ⁻³	5×10 ⁻³
				臭气浓度 (无量纲)	< 10	13	11	12
				颗粒物(mg/m³)	0.209	0.252	0.294	0.203
	A	CE.	1 4	氨(mg/m³)	0.02	0.07	0.07	0.09
	4	SE	1.4	硫化氢(mg/m³)	2×10 ⁻³	3×10 ⁻³	2×10 ⁻³	5×10 ⁻³
				臭气浓度 (无量纲)	< 10	12	12	11
备注		测定组	吉果低	于分析方法检出限时,报	及使用的"方法	去检出限",并	·加"<"表表	<u>.</u>

由表 9.2.2-15 检测结果可知,验收检测期间,厂界监控点(颗粒物、氨、硫化氢、臭气浓度)最大浓度均满足均满足《恶臭污染物排放标准》(GB 14554-93)表 1"新扩改二级"标准限值要求。

9.2.3 厂界噪声

厂界噪声监测结果见表 9.2.3-1。

表 9.2.3-1 厂界噪声检测结果一览表

			检测结果 LAeq						
检测	编	点位名称	2	昼间 (dB)		*	夜间 (dB)		
时间 号	亏		测量值	背景值	测量值修 正	测量值	背景值	测量值修 正	
	1	厂界噪声测点1	49.2	/	/	49.2	/	/	
2024.01.15	▲2	厂界噪声测点 2	45.8	/	/	49.0	/	/	
	▲3	厂界噪声测点 3	44.5	/	/	43.6	/	/	
	1	厂界噪声测点 1	47.7	/	/	47.7	/	/	
2024.01.16	▲2	厂界噪声测点 2	50.7	/	/	48.6	/	/	
	▲3	厂界噪声测点 3	46.8	/	/	47.4	/	/	
备注		P噪声执行《工业企业厂 夜间≤55dB)。②测量				48-2008)中	的3类标准	註(昼间≤	

由表 9.2.3-1 可以看出,验收检测期间,厂界噪声昼间、夜间 L_{Aeq}值范均符合《工业企业厂界噪声标准》(GB 12348-2008)中 3 类区标准限值的要求。

9.2.4 固(液)体废物

固废检测结果见表 9.2.4-1、9.2.4-2、9.2.4-3。

表 9.2.4-1 固废检测结果一览表 1

检	测日期	2023.12.25		
检测项目	单位	■1		
六价铬	mg/L	0.012		
砷	mg/L	1.95×10 ⁻³		
铬	mg/L	0.0353		
铜	mg/L	0.0109		
汞	mg/L	8.86×10 ⁻³		
镍	mg/L	0.296		
铅	mg/L	8.5×10 ⁻³		
锌	mg/L	0.121		
镉	mg/L	ND		
铍	mg/L	ND		
钡	mg/L	3.57		
硒	mg/L	ND		
含水率	%	24		
备注	测定结果低于分析方	方法检出限时,报使用的"方法检出限",并加标志位"<"表示。		

表 9.2.4-2 炉渣检测结果一览表 2

检测日	期	2023.11.17		
检测项目	单位	■2		
热灼减率	%	2.6		
锰	mg/L	0.181		
镉	mg/L	ND		
铬	mg/L	0.0212		
汞	mg/L	4.4×10 ⁻⁴		
镍	mg/L	5.1×10 ⁻³		
铅	mg/L	0.157		
砷	mg/L	ND		

表 9.2.4-3 固废检测结果一览表 3

检测类别	客户编号	检测样品编号	样品描述	检测结果(ng- TEQ/kg)
固体废物中的二噁英	2023.09.27	XHG23111203-02	深灰色固体	1.2×10 ²

由表 9.2.4-1~表 9.2.4-3 可以看出,(炉渣混合样)炉渣热灼减率≤5%,符合《生活垃圾焚烧污染控制标准》(GB 18485-2014)表 1 限值要求。飞灰各指标均符合生活垃圾填埋场污染控制标准(GB 16889-2008)。

9.2.5 污染物排放总量核算及处理效率核算

表 9.2.5-1 总量核算一览表 1

	2024.	01.15	2024.	01.16			
	1#焚烧炉出 口	2#焚烧炉出 口	1#焚烧炉出 口	2#焚烧炉出 口	合计排放速 率 kg/h	生产时间 h	排放总量 t/a
因子		排放速	率 kg/h				
二氧化硫	0.123	0.128	0.295	0.142	0.344	8000	2.75
氮氧化物	3.78	4.00	2.53	2.45	6.38	8000	51.0

表 9.2.5-2 总量核算一览表 2

类别	序号	设施名称	颗粒物排放速率平均值 (kg/h)			
	1	1#焚烧炉排气筒	4.19×10 ⁻²			
	2	2#焚烧炉排气筒	4.47×10 ⁻²			
	3	飞灰仓废气排气筒	2.81×10 ⁻³			
生产废气	4	石灰仓废气排气筒 1	2.46×10 ⁻³			
工) /汉(5	石灰仓废气排气筒 2	2.11×10 ⁻⁴			
	6	活性炭仓废气排气筒	4.63×10 ⁻⁴			
	7	水泥仓废气排气筒	8.76×10 ⁻⁴			
		合计	9.34×10 ⁻²			
	排放总量(8000h/a)					

按年生产 8000 小时计,根据本次竣工验收检测数据,SO₂ 的排放量为 2.75 吨/年,NO_X的排放量为 51.0 吨/年。颗粒物的排放量为 0.747 吨/年。换算成满负荷工况下排放量为: SO₂的排放量为 3.45 吨/年,NO_X的排放量为 63.9 吨/年。颗粒物的排放量为 0.936 吨/年。满足龙岩市环境保护局批复二氧化硫≤38.4 吨/年、氮氧化物≤138..24 吨/年的要求。

项目生产废水未外排, 故无需对其排放总量进行核算。

根据《建设项目主要污染物排放总量指标审核及管理暂行办法》(环发[2014]197号),城镇生活污水处理厂、垃圾处置场(厂)、危险废物和医疗废物处置厂不在其适用范围。本项目为危险废物处置场工程,因此,项目主要污染物排放指标不需要进行审核和管理,不需重新向环境主管部门申请废水、废气污染物排放总量指标。

表 9.2.5-3 处理效率核算一览表

		/	7 	20.74		
类别	处理设施	因子	进口排放速率/ 浓度	出口排放速率/ 浓度	处理效率%	备注
	渗滤液处理站	硫化氢	3.30×10^{-4} kg/h	$1.39 \times 10^{-4} \text{ kg/h}$	57.9	
	废气处理设施	氨	$1.88 \times 10^{-2} \text{kg/h}$	7.03×10^{-3} kg/h	62.6	
	餐厨垃圾事故	硫化氢	5.34×10^{-4} kg/h	$3.53 \times 10^{-4} \text{kg/h}$	33.9	
废气	处理设施	氨	4.36×10^{-2} kg/h	2.20×10^{-2} kg/h	49.5	
及し	应急除臭处理	硫化氢	9.08×10^{-3} kg/h	4.13×10^{-3} kg/h	54.5	
	设施	氨	0.621kg/h	0.156kg/h	74.9	
	飞灰暂存库处 理设施	颗粒物	2.55×10^{-2} kg/h	1.58×10 ⁻² kg/h	38.0	
废水	渗滤液处理设	COD	$3.16 \times 10^4 \text{mg/L}$	10mg/L	99.9	
/及小	施	氨氮	1.10×10^3 mg/L	0.117 mg/L	99.9	

焚烧炉排放口、飞灰仓排气筒、石灰仓排气筒、活性炭仓排气筒、水泥仓 排气筒由于进口不具备监测条件故未监测。

根据本次竣工验收检测数据,渗滤液处理站废气处理设施硫化氢处理效率为 57.9%,氨处理效率为 62.6%;餐厨垃圾事故处理设施硫化氢处理效率为 33.9%,氨处理效率为 45.9%;应急除臭处理设施硫化氢处理效率为 54.5%,氨处理效率为 74.9%;飞灰暂存库处理设施颗粒物处理效率为 38.0%;渗滤液处理设施 COD 处理效率 99.9%,氨氮处理效率 99.9%。

9.3 工程建设对环境的影响

环境空气质检测结果见表 9.3-1~表 9.3-2。

表 9.3-1 敏感点环境空气检测结果一览表

	检测		风速			检测点位	
检测日期	频次	风向	m/s	检测因子	O5	06	07
	1	NW	1.6		0.04	0.02	0.01
	2	NW	1.2	1	0.03	0.02	< 0.01
	3	NW	1.3	氨(mg/m³)	0.04	0.01	0.01
	4	NW	1.5		0.04	0.01	0.01
	1	NW	1.6		1×10 ⁻³	< 1×10 ⁻³	< 1×10 ⁻³
	2	NW	1.2		< 1×10 ⁻³	1×10 ⁻³	< 1×10 ⁻³
	3	NW	1.3	硫化氢(mg/m³)	2×10 ⁻³	< 1×10 ⁻³	1×10 ⁻³
	4	NW	1.5		2×10 ⁻³	1×10 ⁻³	1×10 ⁻³
	1	NW	1.6		< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶
	2	NW	1.2		< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶
	3	NW	1.3	汞(mg/m³)	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶
	4	NW	1.5		< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶
	1	NW	1.6		0.05	0.03	0.03
	2	NW	1.2		0.04	0.03	0.04
	3	NW	1.3	氯化氢(mg/m³)	0.05	0.05	0.04
2024.01.15	4	NW	1.5		0.05	0.03	0.04
202 1.01.13	1	NW	1.6		0.5	0.6	0.5
	2	NW	1.2	一氧化碳	0.6	0.5	0.5
	3	NW	1.3	(mg/m^3)	0.5	0.6	0.5
	4	NW	1.5		0.5	0.6	0.5
	/	/	/	二氧化硫 (ug/m³)日均值	6	8	11
	/	/	/	二氧化氮 (ug/m³)日均值	11	66	45
	/	/	/	铅(mg/m³)日均 值	2.7×10 ⁻⁶	7.4×10 ⁻⁶	7.3×10 ⁻⁶
	/	/	/	镉(mg/m³)日均 值	4.4×10 ⁻⁷	4.4×10 ⁻⁷	2.26×10 ⁻⁶
	/	/	/	砷(mg/m³)日均 值	2.8×10 ⁻⁶	4.2×10 ⁻⁶	3.7×10 ⁻⁶
	/	/	/	颗粒物(mg/m³) 日均值	0.114	0.098	0.078
	/	/	/	PM ₁₀ (mg/m³) 日均值	0.035	0.033	0.031
	1	SE	1.5		0.04	0.06	0.02
2024.01.17	2	SE	1.4	复 (3)	0.01	0.02	0.01
2024.01.16	3	SSE	1.3	氨(mg/m³)	0.03	0.04	0.04
	4	SE	1.6		0.03	0.03	0.03

续表 9.3-1

₩ □ ₩	检测	ᅜᅼ	风速	松洞田 7.		检测点位	
检测日期	频次	风向	m/s	检测因子	○5	06	07
	1	SE	1.5		2×10 ⁻³	3×10 ⁻³	1×10 ⁻³
	2	SE	1.4	min /1 /m / 2 2	1×10 ⁻³	2×10 ⁻³	< 1×10 ⁻³
	3	SSE	1.3	硫化氢(mg/m³)	1×10 ⁻³	2×10 ⁻³	3×10 ⁻³
	4	SE	1.6		2×10 ⁻³	1×10 ⁻³	2×10 ⁻³
	1	SE	1.5		< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶
	2	SE	1.4	王 / / 3)	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶
	3	SSE	1.3	汞(mg/m³)	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶
	4	SE	1.6		< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶	< 6.6×10 ⁻⁶
	1	SE	1.5		0.05	0.03	0.04
	2	SE	1.4	氯化氢(mg/m³)	0.04	0.02	0.04
	3	SSE	1.3	就化全(mg/m²)	0.07	0.03	0.04
	4	SE	1.6		0.05	0.03	0.04
2024.01.16	1	SE	1.5		0.5	0.5	0.4
	2	SE	1.4	一氧化碳	0.6	0.6	0.5
	3	SSE	1.3	(mg/m³)	0.5	0.6	0.5
	4	SE	1.6		0.5	0.5	0.5
	/	/	/	二氧化硫 (ug/m³)日均值	7	7	10
	/	/	/	二氧化氮 (ug/m³)日均值	19	58	20
	/	/	/	铅(mg/m³)日均 值	2.7×10 ⁻⁶	2.4×10 ⁻⁶	1.7×10 ⁻⁶
	/	/	/	镉(mg/m³)日均 值	< 3×10 ⁻⁸	< 3×10 ⁻⁸	< 3×10 ⁻⁸
	/	/	/	砷(mg/m³)日均 值	< 7×10 ⁻⁷	< 7×10 ⁻⁷	< 7×10 ⁻⁷
	/	/	/	颗粒物(mg/m³) 日均值	0.108	0.096	0.070
	/	/	/	PM ₁₀ (mg/m³) 日均值	0.053	0.038	0.033
备注		测定	结果低	于分析方法检出限	时,报使用的"方法	检出限",并加"<	<"表示。

9.3-2 敏感目标环境空气(二噁英)检测结果一览表

采样时间	点位名称	样品编号	检测结果(pg-TEQ/Nm³)
2024-01-15	上杭县城	KZK2401500101	0.041
2024-01-16	工机安城	KZK2401500102	0.020
2024-01-15	百联堂	KZK2401500201	0.017
2024-01-16	日	KZK2401500202	0.094

检测结果表明,验收检测期间,敏感目标(上杭县城、土埔村、百联堂)各检测点位(TSP、PM₁₀、CO、SO₂、NO₂、重金属、氯化氢等)浓度均满足

《环境空气质量标准》(GB3095-2012)表 1、表 2 中浓度限值要求。二噁英浓度满足日本环境空气质量限值。

10 验收监测结论

10.1环保设施处理效率

根据本次竣工验收检测数据,渗滤液处理站废气处理设施硫化氢处理效率为 57.9%,氨处理效率为 62.6%;餐厨垃圾事故处理设施硫化氢处理效率为 33.9%,氨处理效率为 45.9%;应急除臭处理设施硫化氢处理效率为 54.5%,氨处理效率为 74.9%;飞灰暂存库处理设施颗粒物处理效率为 38.0%;渗滤液处理设施 COD 处理效率 99.9%,氨氮处理效率 99.9%。

10.2废水

验收检测期间,生活废水出口废水各项检测项目排放浓度均符合《污水综合排放标准》(GB 8978-1996)三级排放标准限值要求,其中氨氮符合《污水排入城镇下水道水质标准》(GB/T 31962-2015)表 1 中 B 级标准。

生产废水出口各检测项目浓度均符合《城市污水再生利用工业用水水质》 (GB/T 19923-2005)表 1 中敞开式循环冷却水补水水质要求。

10.3废气

10.3.1有组织废气

验收检测期间,(焚烧炉出口)废气各项检测指标排放浓度均符合《生活垃圾焚烧污染控制标准》(GB 18485-2014)表 4 规定的排放限值要求,氮氧化物符合(DB35/1976-2021)《生活垃圾焚烧氮氧化物排放标准》表 2 规定的排放限值;飞灰仓排气筒、石灰仓排气筒、活性炭仓排气筒、水泥仓排气筒、飞灰暂存库处理设施出口颗粒物均符合《大气污染物综合排放标准》(GB 16297-1996)表 2 规定的排放限值;渗滤液处理站废气处理设施出口、餐厨垃圾事故处理设施出口、应急除臭处理设施出口废气各项检测指标排放量均符合《恶臭污染物排放标准》(GB 14554-93)表 2 标准。

10.3.2无组织废气

验收检测期间,无组织废气厂界监控点(氨、硫化氢、臭气浓度)最大浓度均满足《恶臭污染物排放标准》(GB 14554-93)表 1"新扩改二级"标准限值要

求; 其中颗粒物最大浓度满足《大气污染物综合排放标准》(GB 16297-1996) 表 2 限值要求。

10.4噪声

验收检测期间,项目厂界昼、夜间噪声均符合《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准限值。

10.5固体废物

螯合固化后的飞灰浸出液浓度符合《生活垃圾填埋场污染控制标准》(GB 16889-2008)表 1 标准;炉渣热灼减率符合《生活垃圾焚烧污染控制标准》(GB 18485-2014)表 1 标准。

10.6工程建设对环境的影响

验收检测期间,敏感目标各检测点位(TSP、PM₁₀、CO、SO₂、NO₂、重金属、 氯化氢等)浓度均符合《环境空气质量标准》(GB 3095-2012)表 1、表 2 中浓度 限值要求;二噁英浓度符合日本环境空气质量限值。

10.7总量控制

按年生产 8000 小时计,根据本次竣工验收检测数据,SO₂ 的排放量为 2.75 吨/年,NO_X的排放量为 51.0 吨/年。颗粒物的排放量为 0.747 吨/年。换算成满负荷工况下排放量为: SO₂的排放量为 3.45 吨/年,NO_X的排放量为 63.9 吨/年。颗粒物的排放量为 0.936 吨/年。满足龙岩市环境保护局批复二氧化硫≤38.4 吨/年、氮氧化物≤138..24 吨/年的要求。

项目生产废水未外排,故无需对其排放总量进行核算。

根据《建设项目主要污染物排放总量指标审核及管理暂行办法》(环发[2014]197号),城镇生活污水处理厂、垃圾处置场(厂)、危险废物和医疗废物处置厂不在其适用范围。本项目为危险废物处置场工程,因此,项目主要污染物排放指标不需要进行审核和管理,不需重新向环境主管部门申请废水、废气污染物排放总量指标。

10.8结论及建议

(1) 结论

根据验收检测及调查结果,上杭县生活垃圾焚烧发电项目基本落实了环评 及其批复文件提出的环境保护措施和要求,废水、废气污染物及噪声均能做到 达标排放,工业固体废物得到规范处置,基本具备竣工环保验收条件。

(2) 建议

- 1、加强环境管理,强化相关的环境保护制度并贯彻落实。
- 2、加强各环保处理设施日常的运行管理、维护,确保污染物稳定达标排放。 进一步完善雨污分流系统。
- 3、对照《排污单位自行监测技术指南 总则》的要求,切实落实企业自行 监测并信息公开。
 - 4、加强日常环境风险隐患排查,定期开展环境风险事故应急演练。
 - 5、加强地下水监测。

建设项目竣工环境保护"三同时"验收登记表

填表单位(盖章):福建宏其检测科技有限责任公司 填表人(签字):

项目经办人(签字):

	项目名称	上	抗县生活垃圾焚烧发	电项目	项目	目代码		:	2018-350121-77-	-01-030970	建设地	点	福建省	龙岩市上杭县临5 狮子潭路 10 号	
	行业类别 (分类管理名录)		电力、热力生产和供	並业	建设	殳性质			新建 □改扩建	□技术改造	项目厂区中心	经度/纬度	116	5° 27′ 1.01″, 25° 2	2' 30.98"
	设计生产能力		600t/d 垃圾焚烧		实际生	生产能力			600t/d 垃圾	焚烧	环评单	位	福建	省金皇环保科技	有限公司
	环评文件审批机关		龙岩市生态环境局	j	审排	比文号			龙环审[2020)]68 号	环评文件	类型		报告书	
建	开工日期		2020.12		竣]	C日期			2023.1	1	排污许可证明	申领时间		2023.8.17	
建设项目	环保设施设计单位	J	^一 州华科工程技术有限	2公司	环保设施	拖施工单位		江苏4	毕星东方电力环	保科技有限公司	本工程排污许	可证编号	913	50121MA325H75	3H001V
=	验收单位	福建	建宏其检测科技有限责	任公司	环保设施	6监测单位		福廷	建宏其检测科技	有限责任公司	验收监测印	寸工况		75%以上	
	投资总概算 (万元)		37946.43		环保投资总	概算(万元	t)		3690		所占比例	(%)		9.72%	
	实际总投资 (万元)		39114.38		实际环保投资	资 (万元)			4207		所占比例	(%)		10.76%	
	废水治理 (万元)	610	废气治理 (万元)	1640	噪声治理 (万	元)	180	固体废物	台理 (万元)	240	绿化及生态	(万元)	100	其他 (万元)	920
	新增废水处理设施能力			_			新增原	专气处理 设	於施能力	_	年平均工	作时		8000h	
	运营单位		上杭红新能源	斗技有限公司		运营单位	社会统一信用作	弋码 (或组	1织机构代码)	91350823MA342YYF9X	验收时	间		2024.2	
	污染物	原有排 放量(1)	本期工程实际排放 浓度(2)	本期工程允许 排放浓度(3)	本期工程产 生量(4)	本期工程 自身削减 量(5)	本期工程实际(6)	示排放量	本期工程核定 排放总量(7)	本期工程"以新带老"削减量(8)	全厂实际排放总量(9)	全厂核定排量(10)	非放总	区域平衡替代削减量(11)	排放增减 量(12)
污染	废水	_	_	_	_	_	_		_	_	_	_		_	_
物排 放达	化学需氧量	_	_	_	_	_	_		_	_	—	_		_	
标与	氨氮	_	_		_	_	_		_	_	_	_		_	_
总量 控制	废气	_	_		_		_		_	_	_	_		_	_
(I	二氧化硫	_	3	100	_	_	3.45		38.4	_	3.45	38.4	4	_	+3.45
业建	烟尘	—	_		_	_	0.936	5		_	0.936	_			+0.936
设项 目详	工业粉尘	_	_	_	_		_			_	_	_		_	_
填)	氮氧化物	_	60	200	_	_	63.9		138.24	_	63.9	138.2	24		+63.9
	与项目有关的				_		_		<u> </u>	<u>—</u> .		_			
	其他特征污染 物										_			_	_

注: 1、排放增减量: (+) 表示增加, (-) 表示减少。2、(12)=(6)-(8)-(11), (9) = (4)-(5)-(8)-(11) + (1)。3、计量单位: 废水排放量——万吨/年; 废气排放量——万标立方米/年; 工业固体废物排放

量——万吨/年;水污染物排放浓度——毫克/升

附件1:项目委托书

附件七

委托书

福建宏其检测科技有限责任公司:

我单位新建的上杭县生活垃圾焚烧发电项目(环评批复文号:龙 环审[2020]68号),该项目已按照环境保护行政主管部门审批要求, 严格落实各项环境保护措施,污染防治措施与主体工程同时投入运 行。根据国务院《建设项目竣工环境保护验收管理办法》等有关规定, 特委托贵单位进行建设项目竣工验收监测任务。

委托单位: 上杭红新能源科技有限公司

地址:福建省龙岩市上杭县临城镇土埔村狮子潭路 10 号

法人代表: 陈键

联系人: 郑智明

联系电话: 0597-3857800

委托内容:编制建设项目竣工环境保护验收监测报告

备注:

附件 2: 环评批复

龙岩市生态环境局文件

龙环审[2020]68号

龙岩市生态环境局关于上杭县生活垃圾焚烧 发电项目环境影响报告书的批复

上杭县住房和城乡建设局:

你局提交的《上杭县生活垃圾焚烧发电项目环境影响报告 书》(以下简称"报告书")及申请审批的报告收悉。经研究, 批复如下:

一、该项目位于龙岩市上杭县临城镇土埔村烂泥坑现有无害化垃圾填埋场西北侧场地,占地 6.4006 公顷,日处理生活垃圾 600t,主要建设 2 台 300t/d 机械排炉,1 台 12MW 凝汽式汽轮发电机组,2 台额定蒸汽 25.8t/h 余热锅炉,同时建设一条30t/d 餐厨垃圾生产线。主体工程由垃圾接收、贮存与输送系统、焚烧系统、垃圾热能利用系统和餐厨垃圾处理系统组成,配

套建设公用工程、储运工程和环保工程。项目分两期实施,其中,一期工程日处理生活垃圾 300t、餐厨垃圾 30t,二期工程新增日处理生活垃圾 300t。本项目主要处理上杭县的生活垃圾和餐厨垃圾。项目总投资 37946.43 万元,其中环保投资 3690 万元。

依据福建省金皇环保科技有限公司编制的报告书结论,该项目符合国家产业政策,选址基本符合上杭县城市总体规划、上杭县土地利用总体规划、上杭县城环境卫生设施专项规划等相关规划要求,并取得了可行性研究报告批复(龙发改审批 [2019] 45号)和建设项目用地预审意见书(龙自然预 [2019] 17号)。在严格执行环保"三同时"制度。全面落实报告书提出的各项污染防治措施并加强环境管理的前提下,项目建设对环境的不利影响可得到缓解和控制。因此,我局原则同意报告书中所列建设项目的性质、规模、地点和采取的环境保护措施。

- 二、项目建设和运行过程中,应认真对照环保法律法规规 定和报告书内容,严格执行各项环境管理和污染防治、生态保护、风险防控措施要求,确保投入到位、建设到位、管理到 位。重点做好以下工作:
- (一)项目设计、建设和运行中,应严格按照《生活垃圾焚烧发电建设项目环境准入条件(试行)》及清洁生产要求,选用

-2 -

国内外先进的装置设备和生产工艺,提高资源利用率,降低能耗、物耗和水耗,从源头上减少污染物产生量;采用技术工艺成熟可靠的污染治理设施,确保各项污染物稳定达标排放,清洁生产达到国内先进水平。加强项目周边规划控制,厂界外 300m 的环境防护距离范围内不得规划建设居民区、学校、医院、行政办公和科研等敏感目标。

- (二) 施工期应做好施工废水、扬尘、噪声、固废、水土流 失等污染防治, 减轻施工期对环境的影响。
- (三)严格落实水污染防控措施。按照"清污分流、雨污分流"原则设计、建设厂区排水系统。初期雨水、冲洗废水、垃圾渗滤液排入新建的渗滤液处理站,采用"预处理+UFB 厌氧+MBR+NF+RO(预留)"处理后排入市政污水管网,纳滤产生的膜浓缩液送入焚烧炉内焚烧处置;化学除盐水处理系统排水、冷却废水及净化装置排污水排入厂区回用水池,用于除渣冷却、主厂房地面、烟气净化间地面、汽机房地面及厂区造路冲洗水,不外排;生活污水经化粪池处理后排入市政污水管网。外排废水水质应符合《污水排入城镇下水道水质标准》(GB/T 31962-2015)B级标准和上杭县佳波污水处理厂设计进水水质标准要求,其中重金属应符合《生活垃圾填埋场污染控制标准》(GB16889-2008)表2中的浓度限值要求。

- 3 -

做好地下水的保护工作,采取严格的分区防渗措施,卸料大厅、渗滤液处理站、废水输送管道铺设管沟、垃圾池、飞灰固化处理车间、飞灰固化养护棚、危废暂存间、餐厨垃圾处理间等应满足重点污染防治区相应的防腐防渗要求;合理设置地下水监控井,落实地下水污染监测计划,制订地下水风险防范措施,发现问题及时采取相应防治措施,避免对地下水环境造成污染。

(四)严格落实大气污染防控措施。严格控制焚烧炉主要技术性能指标,保证焚烧炉出口烟气有足够的温度、烟气在燃烧室内有足够的停留时间、燃烧过程中适当的湍流和过量的空气,从源头上减少二噁英、氮氧化物等污染物产生。焚烧炉产生的废气经"SNCR 脱硝+旋转喷雾反应塔+活性炭喷射+布袋除尘器"组合工艺处理达标后,通过 100 m 高集束式排气简排放。排放烟气应符合《生活垃圾焚烧污染控制标准》(GB18485-2014)要求。

粉状物料全部采用密闭储仓储存,其中飞灰、水泥、石灰仓各设置一套脉冲袋式除尘器,净化后的废气通过不低于 15m 高排气筒达标排放,颗粒物排放应符合《大气污染物综合排放标准》(GB16297-1996)要求。

严格控制恶臭气体无组织排放,生活垃圾装卸和贮存设施、 渗滤液收集和处理设施等应采取密闭负压措施,并确保在运行期 和停炉期处于负压状态。正常运行时恶臭气体引入焚烧炉内焚烧 处理,停炉检修状态下采用活性炭除臭装置处理后,通过不低于 15m 高排气筒达标排放。餐厨垃圾处理车间恶臭采用"负压收集 +酸洗涤+碱洗涤+正压输送"的两级化学除臭工艺处理后,通过 不低于 15m 高排气筒达标排放。恶臭污染物排放应符合《恶臭污染物排放标准》(GB14554-93)要求。

- (五)严格落实噪声污染防控措施。尽量采用低噪声设备、 合理布局,对高噪声设备采取隔声、消声、减振等综合降噪措施, 加强厂区绿化。厂界噪声应符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中的2类标准要求。
- (六)严格落实固废污染防控措施、炉渣运至上杭县生活垃圾填埋场填埋;活性炭废包装袋、餐厨垃圾处理后的固体渣料、渗滤液处理站污泥、生活垃圾、含油抹布、劳保用品等送入焚烧炉内焚烧处理;除尘器废布袋、废离子交换树脂、废机油、废岩棉、事故除臭系统产生的废活性炭等危险废物应委托有资质单位处置;飞灰经固化稳定化处理,符合《生活垃圾填埋场污染控制标准》(GB16889)要求后定期送至上杭县生活垃圾填埋场单独分区填埋。危险废物临时贮存应符合《危险废物贮存污染物控制标准》(GB18597-2001)及其修改单(2013年)要求,一般固废应符合《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及其修改单(2013年)要求。

- (七)强化环境风险防范和应急管理。落实报告书提出的各项风险防范措施,设立三级防控体系,设置足够容积的事故应急池,确保事故废水得到有效收集并进入事故池。及时编制突发环境事件应急预案并报上杭生态环境局备案,配备应急设施、装备和应急物资,定期开展环境风险应急培训和演练,有效防范和应对环境风险。
- (八)落实环境管理措施。配备相应环境管理人员,制定环保规章制度和台账管理制度,加强污染防治设施的管理和维护,确保各项污染物稳定达标排放;落实排污口规范化工作要求,渗滤液处理站主要污染物应设置在线监测系统,每合焚烧炉应设置运行工况在线监测装置和烟气在线监测装置,并与环保部门联网,在厂区周边显著位置设置显示屏,实时公示在线监测数据;严格落实报告书提出的环境监理工作要求;严格落实报告书提出的监测计划,及时跟踪本项目特征污染物对环境的影响,加强恶臭、二噁荚监测分析,对与本底值变化明显的要及时查找原因,采取必要措施。主动发布企业环境保护信息,自觉接受社会监督。加强宣传与沟通工作,建立畅通的公众参与渠道和平台,及时解决公众反映和担忧的环境问题,满足公众合理的环境保护诉求。
- (九)总量控制。根据报告书核算,项目一期工程实施后最大新增 COD 排放量 1.72t/a、NH₂-N 排放量 0.23t/a、SO₂排放量

19.2t/a、NOx 排放量 69.12t/a, 二期工程实施后全厂最大新增 COD 排放量 2.51t/a、NH₃-N 排放量 0.33t/a、SO₂ 排放量 38.4t/a、NO_x排放量 138.24t/a。

三、本报告书经批准后,如工程的性质、规模、地点、生产 工艺或防治污染、防止生态破坏的措施发生重大变动的,应重新 报批该项目的环评文件。

四、项目污染防治措施必须与主体工程同时设计、同时施工、同时投入使用。项目投产前应及时办理排污许可手续,竣工 后应按规定的标准和程序开展竣工环境保护验收。

五、请上杭生态环境局组织开展该项目环境保护"三同时" 监督检查,并负责项目日常环境监管。

抄 送: 龙岩市环境执法支队,上杭生态环境局,福建省金皇 环保科技有限公司,存档。

龙岩市生态环境局

2020年2月24日印发

附件 3: 应急预案及备案文件

各字意见	该单位的突发环境事件 文件齐全,于以备案,	-应急预案备案文件已于 20	23年10月23日收讫。
and the second		200	羅部(1) 公本) 年 335月 335日

附件 4: 排污许可证

附件 5: 炉渣清运和处置合同

炉渣资源综合利用项目合作

合

同

书

签约时间: 2023 年 2 月 13 日 签约地点: 福建福州鼓楼区

甲方: 上杭红新能源科技有限公司

乙方: 福州市品祥投资有限公司

丙方: 福州美佳环保资源开发有限公司

根据《中华人民共和国民法典》及有关法律法规规定,遵循平等、自愿、公平和诚实信用原则,经甲、乙双方友好协商,就上桩县垃圾焚烧发电厂炉渣资源综合利用开发项目的合作事宜达成一致,签订合同如下;

一、定义

- (1) 炉渣资源综合利用项目:指对<u>上杭县</u>垃圾焚烧发电厂(以下简称电厂)因焚烧 垃圾所产生的副产物炉渣的处理工作。
- (2) 炉渣厂: 是指乙方、丙方的联合体投资建设的具有合法用地并用于炉渣资源综合利用项目的建筑物和机械设备。
 - (3) 炉渣; 是指电厂因垃圾焚烧所产生的从排造口排出未经磁选处理的不可燃物质。
 - (4) 处理出的渣: 是指经过丙方炉渣厂净化处理后产生的建筑基料。
- (5) 投产之日:是指炉渣厂建设完毕,机械设备安装调试完毕后,炉渣厂经环保验 收正式投产发电之日起。
- (6)安全、环保监管:是指炉渣处理厂建设、生产过程中符合国家行业安全、环保 标准,接受甲方及项目业主、行政主管部门安全、环保的监管执行。

二、项目合作内容

- 1、项目开发合作方式;
- (1) 乙方与丙方组成联合体(以下乙方、丙方合称为联合体),独家经营甲方产生的炉渣资源综合利用业务。甲方保证,联合体作为甲方炉渣资源综合利用项目的唯一合作方。
- (2)联合体中,由两方具体负责炉渣处理厂厂址选择。原则上,两方应在项目地建厂;但考虑实际的实际情况,若项目地避邻不友好导致两方无法完成配套征、租地,甲方允许两方在临近的区域工厂扩大设备生产规模(必须满足甲方炉渣目产目清的生产规模),并将就甲方项目地炉渣运往其扩大生产规模的工厂集中处理;由此产生的所有的运费、过路费等费用(包括目不限于运输过程的滴漏处罚、运输的人员车辆安全,伤亡赔偿等)均由两方重相。
- (3)炉渣厂由丙方全额出资建设,包含所有土建施工(含办公厂房、员工宿舍及机 被设备的采购、安装及调试)。
 - (4) 炉渣厂由联合体独立投资经营、自负盈亏。
 - 2、项目合作期限;

甲方与联合体的合作年限:自合同签定之日起至甲方电厂特许经营期终止日止; <u>如遇</u> 技许期满后甲方与政府签订了特许经营期延续或代运营,则本合同终止日期相应延长至甲 方同政府合同终止之日止。

 \mathbf{P}_{i}

- (1) 甲方、联合体以上杭县垃圾焚烧发电厂为合作标准延伸其国内其他项目。在同等条件下。联合体具有优先签约权。
- (2) 因市场发生重大变化或其他重大事项需要解决,经协商一致三方可签订补充协 议进行约定。
 - (3) 甲乙丙三方签订的补充协议与本合同具有同等的法律效力。
- (4) 本合同在三方代表签字并加盖公章之日起生效。各方不得向第三方泄露本合同 约定。
 - (5) 本合同意见书一式陆份。各方各执贰份。具有同等法律效力。

网络,福州美生环保贷源开发有限公司 进 法定代表人或授权人代表。 [1] 计

日期: 2023 年 2 月 13 日

合同签约地:福建福州鼓楼区

附件 6: 取水许可证

附件 7: 飞灰转运申请报告

上杭县城市管理局

杭城函〔2019〕11号

上杭县城市管理局关于焚烧 发电厂建成后焚烧产生的炉渣和飞灰运至 上杭县生活垃圾填埋场分类填埋处理回复的函

上杭县生活垃圾终端处理设施项目建设工作领导小组办公室:

你单位报送的《关于焚烧发电厂建成后焚烧产生的炉渣和飞灰运至上杭县生活垃圾填埋场分类填埋处理的函》收悉。经研究,同意上杭县生活垃圾填埋场无害化填埋场设专区接纳垃圾无害化焚烧产生的炉渣和飞灰。

关于同意接收上杭县生活垃圾焚烧发电项目 飞灰稳定化物的证明

上杭县住房和城乡建设局:

我单位同意接收上杭县生活垃圾焚烧发电厂运行后产生的稳定化飞 灰,并在上杭县生活垃圾卫生填埋场二期扩建工程项目中按规范要求设置 飞灰填埋专区。

贵单位应确保焚烧飞灰经稳定处理后能够满足《生活垃圾填埋场污染控制标准》(16889-2008)要求,具体如下:

- ①含水率小于30%;
- ②二噁英含量低于3 µ gTEQ/kg;
- ③按照HJ/T300制备的浸出液中危害成分浓度低于表1规定的限值。

表 1 浸出液污染物浓度限值

序号	污染物项目	浓度聚值(mg/L)
1	兼	0.05
2	铜	40
3	幹	100
4	铅	0.25
5	辆	0.15
6	铍	0.02
7	钡	25
8	镍	0.5
9	砷	0.3
10	总络	4.5
11	六价格	1.5
12	硒	0.1

上杭县环境卫生管理所 2020年1月8日

附件8:污水接管函

福建省上杭县佳波污水处理有限公司

杭佳波字 (2019) 第 17 号

关于答复咨询处理上杭县生活垃圾焚烧发电项目 生产生活废水的函

上杭县上杭垃圾终端处理设施项目建设领导小组办公室:

贵单位于 2019 年 7 月 25 日出具的《关于咨询上杭县 生活垃圾焚烧发电项目排放污水纳管处理的函》已收悉, 现就该项目所产生的生产生活污水纳管处理作如下答复:

- 1、生活垃圾焚烧发电项目所产生的生活污水经化粪池 预处理后各污染因子浓度限值满足 GB/T31962-2015 《污水 排入城镇下水道水质标准》B 级标准,可直接纳管排入我厂 处理。
- 2、根据 GB16889-2008《生活垃圾填埋场污染物控制标准》第9.1.2条规定:新建生活垃圾填埋场自2008年7月1日起执行表2规定的水污染物排放浓度限值。即生活垃圾

焚烧发电项目所产生的垃圾渗滤液及其他生产废水需经厂 区内污水处理设施处理后,污染物浓度需满足 GB16889-2008《生活垃圾填埋场污染物控制标准》表2中排放浓度 限值,未涉及污染因子需 GB/T31962-2015 《污水排入城镇 下水道水质标准》B级标准,方可纳管排入我厂处理。

福建省上杭县佳

2019 - 7

附件 9: 项目所在声功能调整通知

上杭县人民政府文件

杭政规〔2022〕7号

上杭县人民政府关于调整 县城区声环境功能区划的通告

为贯彻落实《中华人民共和国环境保护法》及《中华人民共和国噪声污染防治法》,保护和改善生活环境,促进经济和社会可持续发展,结合上杭县国土空间总体规划和土地利用现状,现对县城区声环境功能区划进行调整。

一、区划范围

本次区划范围以《上杭县国土空间总体规划(2020-2035)》 (中间成果稿)确定的城镇开发边界范围为基础,规划范围北起 长深高速,南至鹤井片区,西起石壁寨、深陂水库,东至规划 G357 沿线,总面积约 47.24 平方公里。

-1-

二、区划依据

- 1.《中华人民共和国环境保护法》;
- 2.《中华人民共和国噪声污染防治法》;
- 3.《福建省生态环境保护条例》(2022年5月1日起施行);
- 4. 《声环境质量标准》(GB3096-2008);
- 5. 《声环境功能区划分技术规范》(GB/T15190-2014);
- 6.《上杭县城总体规划(2015-2030)》;
- 7. 《上杭县国土空间总体规划(2020-2035)》(中间成果稿);
- 8. 《上杭城区"十四五"近期建设规划(2021-2025)》。

三、声环境功能区定义

按照《声环境质量标准》(GB3096-2008)及《声环境功能 区划分技术规范》(GB/T15190-2014),城市区域可按功能类别 划分为5类区域,其中:

- 0 类声环境功能区: 指康复疗养区等特别需要安静环境的区域。
- 1 **类声环境功能区**: 指以居民住宅、医疗卫生、文化教育、 科研设计、行政办公为主要功能,需要安静环境的区域。
- 2类声环境功能区:指以商业金融、集市贸易为主要功能, 或者居住、商业、工业混杂,需要维护安静环境的区域。
- 3类声环境功能区:指以工业生产、仓储物流为主要功能,需要防止工业噪声对周围环境产生影响的区域。
- 4 类声环境功能区: 指交通干线两侧一定距离之内,需要防止交通噪声对周围环境产生影响的区域,包括 4a 类和 4b 类两种类型。

-2-

4a 类为高速公路、一级公路、二级公路、城市快速路、城市 主干路、城市次干路、城市轨道交通(地面段)、内河航道两侧区 域。本区划将上述交通干线边界线外一定距离内的区域划为 4a 类标准适用区域,采用的距离确定方法如下:

相邻区域为1类区域,距离为50m±5m;

相邻区域为2类区域,距离为35m±5m;

相邻区域为3类区域,距离为20m±5m。

当临街建筑高于三层楼房以上(含三层)时,将临街建筑物 面向交通干线一侧至交通干线边界线的区域划为 4a 类声环境功 能区。

4b 类为铁路干线两侧区域。本区划将铁路干线边界线外一定 距离内的区域划为 4b 类标准适用区域,采用的距离确定方法如下:

相邻区域为1类区域,距离为50m±5m;

相邻区域为2类区域, 距离为35m±5m;

相邻区域为3类区域,距离为20m±5m。

划分4类声环境功能区时,不同的道路、不同的路段、同路 段的两侧及道路的同侧其距离可以不统一。可根据道路两侧的实 际情况,按照上述规定的距离范围确定具体值。

四、环境噪声标准限值

根据《声环境质量标准》(GB3096-2008),各类声环境功能 区适用表 1 规定的环境噪声标准限值。

-3-

表 1 环境噪声标准限值(单位: dB(A))

⇒171+27b	AK I 및 Jul		时段
声环境功能区划		昼间	夜间
0 类		50	40
1 类		55	45
2 类		60	50
3 类		65	55
4 类	4a 类	70	55
4 失	4b 类	70	60

各类声环境功能区夜间突发噪声, 其最大声级超过环境噪声 限值的幅度不得高于 15dB (A)。

五、上杭县城区声环境功能区划方案

本次区划不划分 0 类声环境功能区, 1-4 类声环境功能区划 范围如下所示。

表 2 1 类声环境功能区划方案

片区名称	所属镇区	区域范围
上杭县医院片区	临城镇	上杭县医院及南侧相邻区域

表 3 2 类声环境功能区划方案

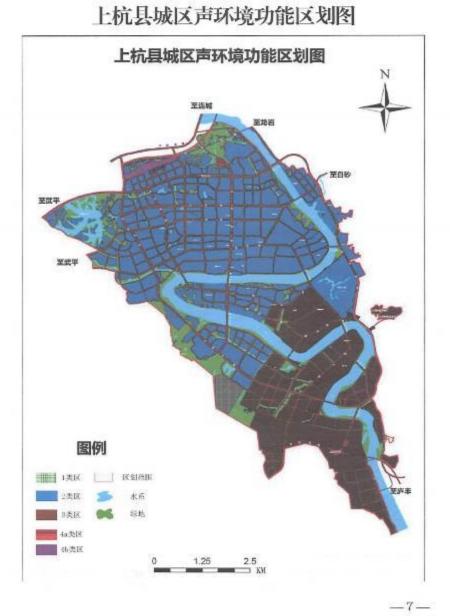
片区名称	所属镇区	区域范围
2 类区片区	临江镇、临城镇	除1类区、3类区以及4类 区以外的其他区域

表 4 3 类声环境功能区划方案

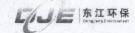
片区名称	所属镇区	区域范围
上杭工业园区	临城镇、临江镇	上杭工业园区红线范围
上杭金铜新材	临城镇、	上杭金铜新材料循环产业园
料循环产业园	庐丰畲族乡	红线范围
生活垃圾焚烧		生活垃圾焚烧发电项目、填
发电厂及填埋	临城镇	埋场、砖厂及维修厂等周边
场片区	1	区域

表 5 4 类声环境功能区划方案

声功能区类别	交通干线类别	交通干线名称
4b 类	铁路干线	龙龙铁路城区段及上杭北站
	主干路	上杭大道、进站大道、龙翔大道、北环路、三环路、二环路、三环路、杭川大道、紫金路、振兴路、琴岗路、东门大桥接线、西互通接线、人民路、江滨北路、铜城路、黄竹路等
4a 类	次干道	东三环路、渡口路、富康中 路、黄金路、龙飞路、琴尚 二路、上刘路、西环路、沿 江东路、腾达路、江南路等
	国省道过境线	国道 205 (城区段)、杭永公路(城区段)、东外环路 G357
	高速公路	古武高速(城区段)、长深高速(城区段)


六、其他规定

- 1.上杭北站(铁路场站)执行 4b 类声环境功能区标准;公交 枢纽、高速公路服务区等执行 4a 类声环境功能区标准。
- 2.上杭县城区建成区以外的其他区域(规划区内),依据其土 地利用规划及现状功能参照乡村声环境功能区划执行。
 - 3.昼间时间: 6:00-22:00, 夜间时间: 22:00-6:00。
 - 4.本区划方案由龙岩市上杭生态环境局负责解释。
- 5.本区划方案自本通知印发之日起实施,有效期5年。《上杭县人民政府关于上杭县城区环境噪声功能区划的通告》(杭政〔2002〕1号)及划分方案同时废止。


附件: 上杭县城区声环境功能区划图

附件 Label Label HATTAKER

附件 10: 危废处置合同

废物 (液) 处理处置及工业服务合同

签订时间: 2023 年 8 月 10 日 合同编号: SHXM23-08-01

甲方: 上杭紅新能源科技有限公司 地址: 福建省上杭县临城镇土埔村狮子潭路 10 号 统一社会信用代码: 91350823MA342YYF9X 法人代表: 陈键 联系电话: 0597-3857800 电子邮箱:

乙方: 福建绿洲固体废物处置有限公司 地址: 南平市延平区炉下镇下岚村陈坑自然村1号绿洲环保 统一社会信用代码: 91350700591740421Y 联系人: 谢香兰 联系电话: 13599515309 电子邮箱: xiexianglan@dongjiang.com.cn

根据《中华人民共和国环境保护法》以及相关环境保护法律、法规规定, 甲方在生产过程中形成的工业废物(液)【<u>详见合同附件工</u>】, 不得随意排放, 弃置或者转移,应当依法集中处理。乙方作为一家具有处理工业废物(液)资质的合法企业,甲方同意由乙方处理其全部工业废物(液),甲乙双方现就上述工业废物(液)处理处置事宜, 根据《中华人民共和国民法典》及相关法律法规, 经友好协商,自愿达成如下条款,以兹共同遵照执行;

一、甲方合同义务

- 1、甲方应将本合同约定下生产过程中所形成的工业废物(液)连同包装物交子乙方处理。乙方向甲方提供预约式工业废物(液)处理处置服务,甲方应在每次有工业废物(液)处理需要前,提前【7】日通过书面形式通知乙方具体的收运时间、地点及收运工业废物(液)的具体数量和包装方式等,乙方应在收到甲方书面通知后【3】日内告知甲方是否可以提供相应的处理处置服务。
- 2、甲方应将各类工业废物(液)分类存储,做好标记标识,不可混入其他杂物,以方便乙方处理及保障操作安全。对袋装、桶装的工业废物(液)应按照工业废物(液)包装、标识及贮存技术规范要求贴上标签。
 - 3、甲方应将待处理的工业废物(液)集中摆放,并为乙方上门收运提供必

要的条件,包括进场道路、作业场地、装车所需的装载机械(叉车等),以便于 乙方装运。

- 4、甲方承诺并保证提供给乙方的工业废物(液)不出现下列异常情况:
- 工业废物(液)中存在未列入本合同附件的品种[特别是含有易爆物质、 放射性物质、多氯联苯以及氰化物等剧毒物质的工业废物(液)];
 - 2) 标识不规范或者错误;包装破损或者密封不严;
- 3) 两类及以上工业废物(液)人为混合装入同一容器内,或者将危险废物 (液)与非危险废物(液)混合装入同一容器;
 - 4) 工业废物(液)中存在未如实告知乙方的危险化学成分;
- 5) 违反工业废物(液)运输包装的国家标准、地方标准、行业标准及通用 技术条件的其他异常情况。

如出现以上任一情形的,乙方有权拒绝接收且无需承担任何责任及费用。

5、甲方应按照本合同约定方式、时间,准时、足额向乙方支付费用。

二、乙方合同义务

- 1、在合同有效期内,乙方应具备处理工业废物(液)所需的资质、条件和 设施,并保证所持有许可证、营业执照等相关证件合法有效。
- 2、乙方自备运输车辆,按双方商议的计划到甲方收取工业废物(液)。乙方在接到甲方收运通知后,若无法接受甲方预约按计划处理工业废物(液)的,应及时告知甲方,甲方有权选择其他替代方法处理工业废物(液);乙方未及时告知导致甲方按原计划作收运准备的,因此产生的费用由乙方承担。乙方某次或某一段时间无法为甲方提供处理处置服务的,不影响本合同的效力。
- 3、乙方收运车辆以及司机,应当在甲方厂区内文明作业,作业完毕后将其 作业范围清理干净,并遵守甲方的相关环境以及安全管理规定。乙方人员进入甲 方厂区后的用工安全由乙方自行负责。

三、工业废物(液)的计重

工业废物(液)的计重应按下列方式【1】进行:

- 在甲方厂区内或者附近过磅称重,由甲方提供计重工具或者支付计重的相关费用。
 - 2、用乙方地磅免费称重;

3、若工业废物(液)不宜采用地磅称重,则按照____方式计重。

四、工业废物(液)种类、数量以及收费凭证及转接责任

- 1、甲、乙双方交接待处理工业废物(液)时,必须认真填写《危险废物转移联单》的各项内容,该联单作为合同双方核对工业废物(液)种类、数量以及收费的凭证。
- 2、若发生意外或者事故,甲方将待处理工业废物(液)交乙方签收且离开 甲方厂区之前,责任由甲方自行承担;甲方将待处理工业废物(液)交乙方签收 且离开甲方厂区之后,责任由乙方自行承担,但法律法规另有规定或本合同另有 约定的除外。

五、费用结算和价格更新

1、费用结算:

根据本合同附件《工业废物(液)处理处置报价单》中约定的方式进行结算。

- 2、结算账户:
- 1) 乙方收款单位名称:【福建绿洲固体废物处置有限公司】
- 2) 乙方收款开户银行名称:【中国工商银行南平市延平支行】
- 3) 乙方收款银行账号:【1406041619009337314】

甲方将合同款项付至上述指定结算账户进行支付后方可确定甲方履行了本 合同付款义务, 否则视为甲方未履行付款义务, 甲方应承担由此造成的一切损失。

3、价格更新

本合同附件《工业废物(液)处理处置报价单》中列明的收费标准应根据市场行情及时更新。在合同有效期内,若市场行情发生较大变化时,乙方有权要求对收费标准进行调整,经双方协商后,应重新签订补充协议确定调整后的收费标准。

六、不可抗力

在合同有效期内,因发生不可抗力事件(是指合同订立时不能预见、不能避免并不能克服的客观情况,包括自然灾害、如台风、地震、洪水、冰雹;政府行为,如征收、征用;社会异常事件,如罢工、骚乱、疫情等方面)导致本合同不能履行时,受到不可抗力影响的一方应在不可抗力事件发生之后三日内,向对方书面通知不能履行或者需要延期履行、部分履行的理由,并提供有关证明。在取

【以下无正文, 仅为合同签署页】

甲方盖章: 上杭红新能源科技有限公司

法人代表: 陈键

收运联系人: 郑智明

联系电话: 18505689819

真: 05973857800

邮 箱:

乙方(盖章):福建绿洲固体废物处置有限公司

业务联系人: 烟香兰

收运联系人: 射香兰

联系电话: 13599515309万

传 真:

开户银行:中国工商银行南平市延平支行

账 号: 1406041619009337314

客服热线: __400-830-8631/0592-6518180

日期: 2023年8月10日

附件二:

工业废物(液)清单

根据甲方需求,经协商,双方确定本合同项下甲方拟交由乙方处理处置 的工业废物(液)种类及预计量如下:

字号	工业废物(液)名称	工业废物 (液) 编号	年預计量(吨/年)	包装方式	处理方式
1	废除尘布袋	HW49 (900-041-49)	20 吨/年	袋装	焚烧
2	废离子交换树脂	HW13 (900-015-13)		袋枝	焚烧
3	废矿物油	HW08 (900-214-08)		桥车	焚燒
4	废岩棉	HW36 (900-032-36)		袋裝	填埋
5	实验室废液	HW49 (900-047-49)		植栽	質能

为免疑义,乙方向甲方提供的系预约式工业废物(液)处理处置服务,上述工业废物(液)处理处置年预计量为本合同签署时甲、乙双方根据签署时的情况智预计的处理量,不构成对双方实际处理量的强制要求,实际处理量以乙方接受甲方预约并为甲方处理完成数量为准。但若甲方在本合同签署后出现实际处理量远低于预计处理量的情况,甲方应及时以书面形式通知乙方,乙方有权将原提供给甲方的工业废物/被沙处理指标进行适当调整。

(盖在)上航台新能缆系技有限公司 (盖章)福建级。固体设物处置有限公司

8/9

附件 11: 土壤污染状况调查报告评审意见

上杭红新能源科技有限公司 土壤和地下水自行监测方案评审意见

上杭红新能源科技有限公司邀请3位专家(名单附后)对福建拓 普检测技术有限公司编制的《上杭红新能源科技有限公司土壤和地下 水自行监测方案》(以下简称"监测方案")进行了函审。经汇总3位 专家函审意见及专家组评议,形成如下评审意见。

一、总体评价

监测方案总体上能满足《工业企业土壤和地下水自行监测 技术 指南(试行)》(HJ1209-2021)等相关技术规范要求,经修改、补充 和宗若后,可作为上杭红新能源科技有限公司开展上杭县生活垃圾焚 烧发电项目厂区土壤和地下水自行监测的工作依据。

二、修改意见

- 1、完善企业资料收集,厂区规场增勘和相关人员访谈,结合项目土壤污染隐患排查,复核厂区需要开展监测的重点设备、设施和场所。
- 2、完善厂区重点监测一类、二类单元识别和划分,结合厂区气象条件和水文地质条件,优化调整厂区土壤和地下水监测点位布设,说明各监测点位现状、功能代表性和采样深度合理性。
- 3、按照HJ1209-2021中有关"监测指标"的规定要求,结合项目特征污染因子识别,完善厂区上壤和地下水初次监测指标体系确定。
- 4、完善样品采集、保存、流转、制备、测试全过程质控措施以 及相关附件、图件和照片。
 - 5、专家提出的其他意见。

专家组成员(签字): 数大僧 海南州 十十八分

附件 12: 炉渣及飞灰检测报告

红西星辉检测技术有限公司

报告编号: XH2312092

检测报告 TEST REPORT

报告编号: XH2312092

委托单位:福建省永正生态科技有限公司

受测单位: 上杭生活垃圾焚烧发电厂

项目名称: 年度自行监测技术服务

检测类别: 固体废物中二噁英

检测单位: 江西星辉检测技术有限公司

江西星辉检测技术有限公司

JiangXi StarLight Detection Technology Co.,Ltd.

第1页, 共6页

江西星辉检测技术有限公司

报告编号: XH2312092

报告说明

- 1、本报告无本单位红色 CMA 章、红色检验检测专用章, 骑缝未盖红色检验检测 专用章无效。
- 2、本报告无编制人、审核人、签发人三级签字无效;报告途改、增删、伪造、 缺页、插入无效。
- 3、未经本单位书面批准,任何人不得部分复印本检测报告的内容;任何对本报告未经授权之途改、伪造、变更及不当使用均属违法,其责任人将承担相关法律及经济责任,我公司保留对上述违法行为追究法律责任的权利。
- 4、本报告结果仅对本次检测负责。由本单位现场采样或检测的,仅对采样或检测期间负责;由委托单位送检的样品,样品信息由客户提供,本单位不负责其真实性,本单位仅对来样负责。
- 5、如果客户对本报告有异议,请于报告发出之日起15日内通过来访、来电、来信、电子邮件等方式提出异议,逾期视为认可本报告,除客户特别申明并支付样品管理费,所有超过标准规定时效期的样品均不再做留样,对无法保存、复现的样品不受理申诉。
- 6、本单位对报告真实性、合法性、适用性、科学性负责并对本报告之检测数据保守秘密。

本公司通讯资料:

单 位: 江西星辉检测技术有限公司

地 址: 江西省南昌市南昌高新技术产业开发区天祥大道 2799 号南昌佳海产业 园 170#101 室

即 海: StarlightTesting@yeah.net

郎 編: 330096

电 话: 0791-82328008-803

第2页,共6页

江西星辉检测技术有限公司

报告编号: XH2312092

检测报告

一、检测概况

委托单位	福建省永正生态和	并按有限公司			
收样日期	2023.11.27	样品来源	委托单位送样		
检测类别	固体战物中二噁药	固体成物中二噻英			
检测日期	2023.11.27-2023.	2023.11.27-2023.12.17			
主要仪器	高分辨双聚焦磁力	高分辨双聚焦遊式质谱仪 DFS			
检测依据	HJ 77.3-2008《固体废物 二噁英类的测定 同位素稀释高分辨气料色谱-高分辨谱法》				

二、检测结果

检测类别	客户样品编号	检测样品编号	样品描述	检测结果 (ng-TEQ/kg)
固体度物 中的二噁 英	2023.09.27	XHG2311203-02	深灰色同体	1.2×10'

注:1、二嗪英类同类换算见附录1。

参考标准:《生活垃圾填埋场污染控制标准》(GBL6889-2008)6.3 中二應英类含量低于3000ng/kg。

编列人: (1017年)

#极小 采图武

*%人: 杜 辫

签发日期: 2023-12-2]

本页以下空白

第3页, 共6页

红西星辉检测技术有限公司

报告编号: XH2312092

附录1

	位则样品编号	XHG2311203-02	样异类型	ă	体废物
	二喊天类	样品检出限	实测浓度	毒性当	量质量浓度
	二% 天灾	ng/kg	ng/kg	I-TEF	ng-TEQ/kg
多叙	2,3,7,8-T ₄ CDD	0.03	39	*1	39
代	1,2,3.7,8-P ₂ CDD	0.05	2.2×10 ²	×0.5	1,1×10 ²
二 *	1,2,3,4,7,5-H ₆ CDD	80.0	3.7×10^{2}	×0.1	37
炸	1,2,3,6,7,8-H ₆ CDD	0.05	7.6×10 ²	×0.1	76
Z)	1,2,3,7,8,9-H ₆ CDD	0.08	3.7×10 ³	×0.1	37
二嘎美	1,2,3,4,6,7,8-H ₂ CDD	0.05	4.2×10 ³	×0.01	42
	O ₂ CDD	0.1	3.3×10 ³	×0.001	3.3
	2,3,7,8-T ₄ CDF	0.03	3.1×10 ²	×0.1	31
	1,2,3,7,8-PsCDF	0.05	4.2×10 ²	×0.05	21
t	2,3,4,7,8-P ₅ CDF	0.08	1.0×10 ³	×0.5	5.0×10 ²
¥.	1,2,3.4,7,8-H ₆ CDF	0.05	4.8×10 ²	×0.1	48
代	1,2,3,6,7,8-H ₆ CDF	0.05	6.8×10 ²	×0.1	68
苯并	1,2,3,7,8,9-H ₈ CDF	0.05	3.0×10 ²	×0.1	30
呋	2,3,4,6,7,8-H ₆ CDF	0.05	1.1×10 ³	≥0.1	1.1×10 ²
啦	1,2,3,4,6,7,8-H ₂ CDF	0.05	1.6×10³	×0.01	16
	1,2,3,4,7,8,9-H ₂ CDF	0.05	3.6×10 ²	×0.01	3.6
	O ₈ CDF	0.1	1.1×10 ³	×0.001	1.1
	二噁英类总量(PCI	DDs+PCDFs)/ng-TEQ	/kg	1.	2×10³

- 注: 1、实则质量浓度: 二噁英类质量浓度测定值, ng/kg。
 - 2、再性当量因子(TEF):采用国际毒性当量因子I-TEF定义。
 - 3、毒性当量(TEQ)质量浓度: 折算为相当于2,3,7,8,-T₂CDD 质量浓度。ng/kg。
 - 4、择品量: 3.6513g (干重)。
 - 5、当实满质量浓度低于样品检出限对用"N.D. <X"表示。计算毒性当量(TEQ)质量深度 时以 1/2 检出限 X 计算、

第4页,共6页

江西星辉检测技术有限公司

报告编号: XH2312092

附录2

资质证书

第5页,共6页

江西星辉粒测技术有限公司

报告编号: XH2312092

附录3

收样照片

****报告结束 ****

第6页,共6页

检 测 报 告

TEST REPORT

No: YZ23HCY0179-9

 项目名称
 上杭生活垃圾焚烧发电厂送样检测

 麥托单位
 上杭红新能源科技有限公司

 Applicant
 送样检测

 Testing Type
 送样检测

 报告日期
 2024 年 01 月 09 日

Report Date

福建省水正生态科技有限公司

Fujian Yongzheng Ecological Technology Co., Ltd.

报告声明

Report Declaration

1、报告无本公司"检验检测专用章"无效:

The report is invalid without the company's 'Stamp for inspection and testing,

2、报告无签字、签发日期无效:

The report is invalid without signature and date.

3、未经本公司书面同意,不得部分复印本报告或用于其它用途,报告涂改、换页无效;

Without the written consent of the company, the report is not allowed to be partially copied or used for other purposes, and the alteration or page changed of this report is invalid.

4、有关检验检测数据未经允许,委托单位不得擅自向社会发布信息;

The entrusting entity should not disclose any inspection related data or information to the public without authorization.

5、报告结果仅对本次采样、送检样品负责,对不可复现的检测项目不进行复检;

The report results are only responsible for this sampling and samples submitted for inspection, and no re-examination will be carried out for non-reproducible test items.

6、若因委托单位提供的信息不准确或信息遗漏而影响结果的有效性,本公司不承担因此产生的任何责任。

If the validity of the results is affected by the inaccuracy or omission of the information provided by the entrusting entity, the company will not assume any liability arising therefrom.

 为了您的利益,对报告若有异议请于签收之日(以快递单号查询的签收日期为准)起十五日内 向本公司提出。

For your henefit, if you have any objections to the report, please submit it to our company within 15 days (Subject to receipt date of the courier number query).

福建省永正生态科技有限公司

地 址: 福建省福州市晋安区鼓山镇福光路 323 号永正大厦(永正檢验检测大数据研发中心)研 究中心 11-12 层

电 话: 0591-22266301

传 真: 0591-22266300

邮 编: 350014

电子邮箱: yzst@yzonline.net

报告编号: YZ23HCY0179-9

第1页共3页

一、基本信息

委托方	AN AREAL LA		Stiff and dis-	1. 4+ F1 d+ 10 A+ 1. 1+4.17% 77%	B临城镇土城村狮子常路 10 号		
代	单位地址		福建省	1.机县临政镇土壤村排了?			
**	以系人	251	四月	联系方式	18505	089819	
受 单位名称	上杭紅新能源科技有限公司						
受 检 方	草位地址	福建省上杭县临城镇土埔村狮子潭路 10 号					
来	释方式			自送样	=3.22		
日期	收样日期	2023.12.25	检测日期	2023.12.27-2024.01.06	报告日期	2024.01.09	
检测 人员	分析人员	除秦杰、陈彩绘、吴信钊、林孝、杨小娟					
	备注	6.灰木	华品为 2023 年	09月27日批次样品。该	信息中委托方拉	5供。	

二、样品信息

表 1 样品类别、样品名称、样品编号、样品描述以及样品状态一览表

样品类别	样品名称	样品编号	样品描述	样品状态	检测项目
固体废物	飞灰	23HCY0179-9T0001	丁、灰色	完好	钡、镅、锗、汞、含水 率、六价格、镍、铍、 铅、砷、铜、硒、体

三、检测方法及其主要仪器信息

表 2 检测类别、检测项目、检测方法、检出限一览表

检测类别	检测项目	方法编号	方法名称	检出限
	接出毒性	HJ/T 299-2007	图体废物 浸出毒性浸出方法 硫酸硝酸法	7
	含水率	HJ 1222-2021	固体废物 水分和干物质含量的测定 宣言法	I
	板	HJ 766-2015	固体废物 金属元素的锁定 电感耦合 等离子体质谱法	1.8µg/L
	\$%	HJ 766-2015	固体废物 企屬元素的测定 电影耦合 等离子体质谱法	1.2μg/L
	铬	HJ 766-2015	間体度物 金属元素的测定 电感耦合 等离子体质谱法	2.0µg/L
固体废物	灰	HJ 702-2014	固体废物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法	0.02μg/L
	六价格	GB/T 15555,4-1995	固体废物 六价格的测定 二苯胺酚 ' 肼分光光度法	0.004mg/L
	镰	НЈ 766-2015	匠体废物 会属元素的制定 电感相合 等离子体质谱法	3.8µg/L
	铍	НЈ 766-2015	固体废物 金属元素的测定 电感耦合 等离子体质谱法	0.7μg/L
	炎	НЈ 766-2015	固体废物 金属元素的测定 电感耦合 等离子体质谱法	4.2μg/L
	(a)t	НЈ 702-2014	固体废物 汞、砷、硒、铋、锑的测定 微波消解/原子类光法	0.10µg/L

Web: http://www.yzonline.net

Tel: 0591-22266301

报告编号: YZ23HCY6179-9

第2页共3页

检测类别	检测项目	方法编号	方法名称	检出限
固体废物	ŧΊ	HJ 766-2015	固体废物 金属元素的测定 电感耦合 等离子体质谱法	2.5µg/L
	Œ	ПЈ 702-2014	周体废物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法	0.10µg/t
	11	HJ 766-2015	固体废物 金属元素的测定 电感耦合 等离子体质谱法	6.4µg/L

表 3 主要仪器设备一览表

序号	仪器设备编号	仪器设备名称	仪器设备型号	有效期至
1	YZSI-Q001	可见分光光度计	V-5600	2024,11.10
2	YZST-Q053-02	电子天平	LCD-A200	2024.03.28
3	YZST Q055	原子荧光光度计	AFS 8510	2024.11.10
4	YZST-Q055-01	原子荧光光度计	AFS-8510	2024.11.10
5	YZST-Q074	电感耦合等离子体质谱仪	PQ-MS	2024,11,10

四、检测结果

表 4 固体废物检测结果一放表

收样日期	样品名称	检测项目	檢測单位	标准限值	检测结果	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		柳	mg/L	<25	3.57	
		绸	mg/L	< 0.15	ND	
		清	mg/L	<4.5	0.0353	
		汞	mg/L	<0.05	8.86×10 ⁻³	
		含水率	%	<30	24	
		六价铬	mg/L	<1.5	0.012	
2023.12.25	76次	镈	mg/L	<0.5	0.296	
		鉄	mg/L	<0.02	ND	
			钳	mg/L	<0.25	8.5×10 ⁻⁷
		神	mg/L	<0.3	1.95×10 ³	
		鲋	mg/L	<40	0.0109	
		₹ei	mg/L	<0.1	ND	
		锌	mg'L	<100	0.121	
各注	1、檢測結果仅对来样 2、ND 表示检測结果/ 3、限值依据 GB 1688 托力提供。)于标准方法检出限, >	物出限详见表 2; 場污染控制标准3 6	.3(1)及表 1,	标准限值由	

编制

Ansi

市核

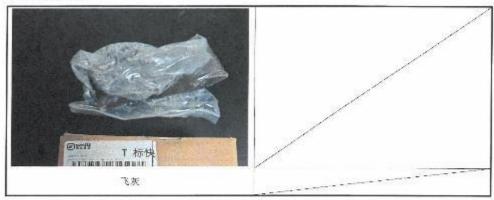
杨崎

签发

吴允恪

编制日期 2024年01月09日 审核日期 2024年01月09日 签发日期 2024年01月09日

------本页以下空白------


Weh: http://www.yzonline.net

Tel: 0591-22266301

报告编号: YZ23HCY0179-9

第3页共3页

五、收样照片

Web: http://www.yzonline.net

Tel: 0591-22266301

检验检测机构 资质认定证书

副本

证书编号: 191312050001

名称: 福建省永正生态科技有限公司

福建省福州市晋安区鼓山镇福光路 333 号永正大厦(永正 地址:

检验检测大数据研发中心)研究中心 11-12 层

经审查, 你机构已具备国家有关法律、行政法规规定的基本条 件和能力,现予批准,可以向社会出具具有证明作用的数据和结果。 特发此证。资质认定包括检验检测机构计量认证。

检验检测能力(含食品)及授权签字人见证书册表。

你机构对外出其检验检测报告或者证书的法律责任由福建省 永正生态科技有限公司承担。

许可使用标志

191312050001

发证日期: 2019 年 08 月 27 日

有效期至: 2025 年 08 月 26 日

发证机关: 福建省市场监督管理局

本证书由国家认证认可监督管理委员会监制。在中华人民共和国境内有效、

检 测 报 告

TEST REPORT

No: YZ23IICY0179-5

 项目名称 Project
 上杭生活垃圾焚烧发电厂送样检测

 委托单位 Applicant
 上杭红新能源科技有限公司

 检测类别 Testing Type
 送样检测

 报告日期 Report Date
 2023 年 12 月 06 日

报告声明

Report Declaration

1、报告无本公司"检验检测专用章"无效;

The report is invalid without the company's 'Stamp for inspection and testing.

2、报告无签字、签发日期无效:

The report is invalid without signature and date.

3、未经本公司书面同意,不得部分复印本报告或用于其它用途,报告绘改、换页无效;

Without the written consent of the company, the report is not allowed to be partially copied or used for other purposes, and the alteration or page changed of this report is invalid.

4、有关检验检测数据未经允许,委托单位不得擅自向社会发布信息;

The entrusting entity should not disclose any inspection related data or information to the public without authorization.

5、报告结果仅对本次采样、送检样品负责,对不可复现的检测项目不进行复检;

The report results are only responsible for this sampling and samples submitted for inspection, and no re-examination will be carried out for non-reproducible test items.

6、若因委托单位提供的信息不准确或信息遗凝而影响结果的有效性,本公司不承担因此产生的任何责任;

If the validity of the results is affected by the inaccuracy or omission of the information provided by the entrusting entity, the company will not assume any liability arising therefrom.

7、为了您的利益,对报告若有异议请于签收之目(以快递单号查询的签收日期为准)起十五日内 向本公司提出。

For your benefit, if you have any objections to the report, please submit it to our company within 15 days (Subject to receipt date of the courier number query).

福建省永正生态科技有限公司

电 话: 0591 22266301

传 真: 0591-22266300

邮 编: 350011

电子邮箱: yzst@yzonline.net

第1页共3页

一、基本信息

单位名称		上杭红箭能源科技有限公司						
委 单位单址 方 联系人	单位纸油	福建省上結盟階級領土埔村獅子彈路10号						
	联系人	加等	第 7月	联系方式	18505	089819		
受	単位名称]9	三杭红新能源科技有限公	ēļ			
受检方	单位地址	55	杨建省。	上杭县临城镇土埔村狮子潭路 10 号				
*	校样方式		88	自送样		nev nev		
日期	收样日期	2023.11.17	检测订期	2023.11.27-2023.11.29	报告日期	2023 12.06		
检测 人员	分析人员		朱宝玲、陈彩表、林天风、唠小娟					
	各注	护渣柱	羊品采样日期 2	为2023年11月16日。该	信息口委托方拉	是供。		

二、样品信息

表 1 样品类别、样品名称、透样编号、样品编号、样品描述以及样品状态一览表

样品类别	样品名称	样品编号	样品插述	样晶状态	检测项目
固体废物	沪沍	23HCY0179-5T0001	于, 灰色	元好	懂、俗、汞、镍、铅、 热灼减率、砷

三、检测方法及其主要仪器信息

表 2 检测类别、检测项目、检测方法、检出限一览表

检测类别	检测项目	方法编号	方法名称	检出陨
	浸出毒性	HJ/T 299-2007	百体废物 浸出再性浸出方法 硫酸 钼酸法	i
	14	HJ 766-2015	同体废物 金属元素的测定 电感器 合等离子体质谱法	1.2µg/J.
	铬	HJ 766-2015	固体废物 金属元素的测定 电感精 合等次子体质谱法	2.0µg/L
	žx	HJ 702-2014	固体废物 汞、硅、硒、铋、锑的则 定 微波消耗/原子荧光法	0.02µg/1
固体废物	年	НЈ 766-2015	固体废物 金屬元素的測定 电感精合等离子体质谱法	3.6µg/L
	铼	HJ 766-2015	固体废物 金属元素的测定 电感耦合等离子体质谱法	3,8µg/L
	铂	HJ 766-2015	固体废物 金属元素的测定 电感概合等离子体质谱法	4.2μg/L
	热灼威率	HI 1024-2019	固体废物 热灼减率的测定 重量法	0.2%
	砷	HJ 702-2014	固体废物 汞、砷、硒、锡、锑的测定 微波消解/原子荧光法	0.10μg/Ι

-----本页以下空白------

Web: http://www.yzonline.nct

Tel: 0591-22266301

报告编号: YZ23HCY9179-5

第2页共3页

表 3 主要仪器设备一览表

序号	仪器设备编号	仪器设备名称	仪器设备型号	有效期至
1	YZST Q014	箱式电阻炉	SX2-4-10T	2024.11.10
2	YZST-Q055	原子荧光光度计	AFS-8510	2024.11.10
3	YZST-Q055-01	原子荧光光度计	AFS-8510	2024.11.10
4	YZST-Q074	电影耦合等离子体质谱仪	PQ-MS	2024.11.10

四、检测结果

表 4 固体废物检测结果一览表

热均接率	% mg/L	1	2.6
	mg/L	F 1	
		(30)	0.181
領	mg/L	<0.15	ND
勃	mg/L	<4.5	0.0212
汞	mg/L	< 0.05	4.4×10 ⁻⁴
傑	mg/L	<0.5	5.1×10°
領	mg/L	<0.25	0.157
6年	mg/L	<0.3	ND
	表 傑 領 (計	元 mg/L 傑 mg/L 符 mg/L	示 mg/1 <0.05

编制

Ansi

事核

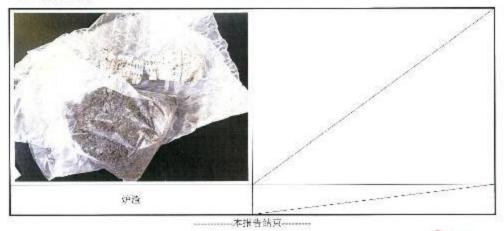
杨青

签发

吴允恪

續制日期 2023年12月06日 **阿核**日期 2023年12月06日 **簽**发日期 2023年12月06日

------本页以下空白------


Web: http://www.yzonline.net

Tel: 0591-22266301

报告编号: YZ23HCY0179-5

第3 页 共 3 页

五、收样照片

Email: yzst@yzon.inc.net

Web: http://www.yzonline.net 1cl: 0591-22266301

检验检测机构

副本

证书编号: 191312050001

名称: 福建省永正生态科技有限公司

地址: 福建省福州市晋安区鼓山镇福光路 333 号永正大厦(永正 检验检测大数据研发中心)研究中心 11-12 层

经审查, 你机构已具备国家有关法律、行政法规规定的基本条件和能力, 现于批准, 可以向社会出具具有证明作用的数据和结果。 特发此证。资质认定包括检验检测机构计量认证。

检验检测能力(含食品)及授权签字人是证书附表。

你机构对外由具检验检测报告或者证书的法律责任由福建省 永正生态科技有限公司承担。

许可使用标志

191312050001

发证日期: 2019 年 08 月 27 日 有效期至: 2025 年 08 月 26 日

发证机关: 福建省市场监督管理局

泰证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效

附件 13: 在线设备验收报告

固定污染源烟气排放连续监测系统 技术指标验收报告

项目名称: 上杭红新能源科技有限公司焚烧炉 H1(30173-2)排放口

CEMS-2000 B FT 型烟火排放连续临测系统技术验收

CEMS 供应商:聚光和技(杭州) 整个有限公司

运维单位:上杭红新能源科技有限公司

检测单位:福建安格思安全环保技术有限公司

验收单位: 上杭红新能源科技有限公司

2024年02月

1 前言

1.1 概况

2024年2月,上杭红新能源科技有限公司依据《固定污染源烟气(SO₂、NOx、颗粒物)排放连续监测技术规范》(HJ 75-2017)对焚烧炉 H2(即30173-2)排放口,CEMS-2000 B FT 型烟气连续监测系统、Synspec PM 烟气颗粒物在线监测系统、氧化锆氧分析仪、温压流分析仪技术指标进行验收。技术指标包括颗粒物、CO、SO₂、NO_x、氯化氢、含氧量、烟温、湿度、流速九项,其中有证标准气体和参比方法检测结果由福建安格思安全环保技术有限公司提供。

1.2 站房建设

实地测量采样点到监测站房距离为30米,站房面积为,20.2m²,高度为8 米,标高为±0.00米,监测房内安装了冷暖空调,室温控制在15-30°C, 相对湿度≤60,空调安装了来电自启设备。监测房具备防水、防潮、隔热、 保温措施。具有 CEMS 数据传输的通讯条件。在监测房及采样平台各安装 有视频监控,视频可保存一个月。防雷监测接地电阻及过渡电阻符合要求。 配备了不同浓度的有证标气,且在有效期内。

1.3 设备基本情况

1.3.1 系统概述

CEMS-2000 B FT 型烟气连续监测系统是一款基于一款傅立叶变换 红外光谱分析技术的烟气分析系统,可在线监测 SO₂、NO_X (NO/NO₂)、 HCL、CO、O₂等多种有机无机气体,具有较高的精度和较宽的动态范围, 该系统整体采用"湿热法"采样技术,全程伴热,有效的保证了系统的测 量精度和准确度,适用于复杂工况条件下的恶劣现场的在线监测,同样可 应用于超低浓度检测。CEMS -2000 B FT 系统具有以下特点:

高性能:拥有高分辨率,宽波长范围(800-4400 cm),低检测下限, 多组分同时快速分析的特点,适合垃圾焚烧、超低排放领域。

高可靠: 充分考虑实际使用工况,拥有更宽的温度、湿度的适用范围 样 气全程均匀保温 温度可测、可控。断电自保护,避免了仪器损坏。

可扩充因子库: 仪器可测量多种因子, 因子种类和数量由客户需求进行定制, 在仪器出厂后同样可进行因子库的升级扩建, 具有广泛的应用性和高效性。

件热管吹扫:系统流路设计中加入伴热管吹扫程序,具备更强的管路 自清洁能力,保证系统的长期稳定运行,提高产品的测量准确性和产品使 用寿命。

CEMS-2000 B FT 系统由气态污染物监测子系统、烟尘(颗粒物)监测子系统、烟气参数监测子系统以及数集与处理子系统 4 部分构成。其中,气态污染物监测子系统从采样探头到分析气体室进行了全程伴热,保证温

度的一致性,进而保证测量准确性。仪器的设计和制造,均遵照国内外检测标准规定,并参考了EPA320等国际标准,关键流程、检测项均实现了内部预置、预设,可实现开机全自动化测量。

1.3.2

气态污染物监测子系统采用 FTIR 气体分析仪与采样预处理系统结合,测量 SO2、NOx (NO 、NO2)、 HCI 、 CO 等气体。

SO2 量程: 0-100-200mg/m3; NO 量程: 0-100-400mg/m3;

NO2 量程: 0-50-100mg/m3; HCI 量程: 0-50-150mg/m3;

CO 量程: 0-100-200mg/m3;

1.3.3 Synspec PM 烟气颗粒物在线监测系统

Synspec PM 型烟气颗粒物在线监测系统是为了满足湿烟气环境下低浓度颗粒物在线监测需求而开发。主要用于监测超低排放机组排口的颗粒物浓度,系统采用抽取式等速采样方式,利用光散射检测方法来实时检测颗粒物浓度,检测限低、响应速度快、测量范围广(最小 0-5mg/m³,最大 0-200mg/m³,支持双量程切换)。

监测系统主要由等动力采样探头(内含光散射测量模块)和控制箱组成。采样烟气中的水滴加热后迅速汽化后传输到光散射测量模块,通过对颗粒物散射光信号实时分析处理,得到粉尘尝试。

1.3.4 氧化锆氧含量系统

氧化锆材料是一种氧化锆固体电解质,是在纯氧化锆中掺以一定量的 氧化钙或氧化钇,经高温烧结后形成的稳定的氧化锆陶瓷烧结体。由于它 的立方晶体中含有氧离子空穴,因此,在高温条件下它是良好的氧离子导 体。

利用它的这一特性,在一定的温度下,当传感器两侧的氧含量不同时, 它便是一个典型的氧浓度差电池。如果在氧化锆管内外涂制纯铂电极,用 电炉对氧化锆管加热,使其内外壁接触氧分压不同的气体,氧化锆管就成 为了一个氧浓差电池。测量范围 0-25%。

烟气参数监测子系统包括烟气流速、烟气压力、烟气温度、烟气湿度。烟气流速采用差压变送器测量,通过测量烟气流动中的全压和静压、换算得到烟气的流速。烟气温度采用铂电阻温度传感器测量,烟气湿度采用 FTIR 光谱法进行测量。。

设备已于 2023 年 11 月 22 日完成联网 (附省亲清平台在线监控截屏)

1.4 设备运维

公司在线设备自主运维,运维人员有多年维保经验,并取得了中国环境保护协会颁发的《自动监控(烟尘烟气运行工)》证书。王文祥,证书号; ZDJK(YCYQ)-202304179。陈宽毅,证书号; ZDJK(YCYQ)-202206456 技术指标验收结果汇总如下;

2 比对监测依据

- (1)《固定污染源烟气(SO₂、NO_x、颗粒物)排放连续监测技术 规范》(HJ 75-2017);
 - (2) 《固定污染源烟气(SO_2 、 NO_X 、颗粒物)排放连续监测系统 技术要求及检测方法》

(HJ 76-2017);

- (3)《固定污染源排气中颗粒物测定与气态污染物采样方法》 (GB/T 16157-1996);
- (4)《关于加强生活垃圾焚烧发电厂自动监控和监控执法工作的通知》(环办执法[2019]64号附件2,2019.12.26)。
- (5) 《生活垃圾焚烧发电厂现场监督检查技术指南》 (HJ1307-2023);
- (6)《生活垃圾焚烧发电自动监测数据应用管理规定》(生态环 境部 第10号部令 2019.10.11)
- 3 固定污染源烟气排放连续监测系统技术指标验收

3.1 技术指标验收内容

表 3-1 比对验收监测内容

	F.4 4 Am P. Come P. 4	1.4.10
序号	监测因子	验收指标

序号	监测因子	验收指标
	」 二氧化硅、氮氧化物、氮化氮、一氧化碳、含氧 量	零点漂移
		量程源移
1	No.	示值误差
	*	系统响应时间
		准确度
		零点原移
2		量程源移
		准确度
3	烟温、烟气湿度、流速	准确度

3.2 评价标准

根据《固定污染源烟气(SO₂、NOx、颗粒物)排放连续监测技术规范》 (HJ 75-2017),监测站房与采样点之间的距离应尽可能近,原则上不超过 70m,比对监测要求详见表 3-2 和表 3-3。

表 3-2 CEMS 验收比对技术要求

检测项目			技术要求				
		示值误差	当满量程≥100μmol/mol (286mg/m³) 时,示值误差不超过±5% (相对于标准气体标称值); 当满量程<100μmol/mol (286mg/m³) 时,示值误差不超过±2.5% (相对于仪表满量程值)。				
4		系统响应时间	≤200s				
气体污	=	零点漂移、量 程傳移	不超过±2.5%				
染物	氧化		排放浓度≥250µmol/mol(715mg/m³)时,相对推确度≤15%				
物 C E M	碗	准确度	50μmol/mol(143mg/m³)≤排放浓度<250μmol/mol(715mg/m³)时,绝对误差不超出 ±20μmol/mol(57mg/m³)				
M S		130 1/1000	20μmol/mol(57mg/m³)≤排放浓度<50μmol/mol(143mg/m³)时,相对误差不超出=30%				
			排放浓度<20µmol/mol(57mg/m³)时,绝对误差不超过±6µmol/mol(17mg/m³)				

续表 3-2 CEMS 验收比对技术要求

检测项目			技术要求						
		示值误差	当满量程≥200μmol/mol (410mg/m³) 时,示值设 当满量程<200μmol/mol (410mg/m³) 时,示值设						
		系统响应时间	≤200s						
	氮	零点漂移、量 程源移	不超过±2.5%						
	氧化		排放浓度≥250µmol/mol(513mg/m³)时,相对	准确度≤15%					
Jr.	49)	准确度	50μmol/mol(103mg/m³)≤排放浓度<250μmol ±20μmol/mol(41mg/m³)	/mol (513mg/m³) 时,绝对误差不超出					
体		116.5424	20μmol/mol(41mg/m³)≤排放浓度<50μmol/m	ol (103mg/m²) 时,相对误差不超出±30%					
污染			排放浓度<20μmol/mol (41mg/m ⁵) 时,绝对误	差不超过±6μmol/mol(12mg/m³)					
的 C E M S		示值误差	当满量程≥200µmol/mol (250mg/m³)时,示值设 当满量程≤200µmol/mol (250mg/m³)时,示值设						
		系统响应时间	≤200s						
	=	零点漂移、量 程漂移	不超过=2.5%						
	氧化	准確度	排放浓度≥250μmol/mol(313mg/m³)时,相对准确度≤15%						
	碳		50µmol/mol(63mg/m³)≤排放浓度<250µmol/ ±20µmol/mol(25mg/m³)	mol(313mg/m³)时,绝对误差不超出					
			20μmol/mol〈25mg/m³〉≤排放浓度<50μmol/m	ol(63mg/m³)时,相对误差不超出±309					
			排放浓度<20μmol/mol(25mg/m³)时,绝对误	差不超过±6μmol/mol(8mg/m³)					
-		示值误差	当满量程≥200µmol/mol(326mg/m³)时,示值误差不超过±5%(相对于标准气体标称值) 当满量程<200µmol/mol(326mg/m³)时,示值误差不超过±2.5%(相对于仪表满量程值)						
气体		系统响应时间	≤400s						
污藥	氯化	零点源移、量 程源移	不超过+2.5%						
物 CE	無		排放浓度≥250µmol/mol(408mg/m³)时,相对	准确度≤15%					
MS		准确度	50μmol/mol (82mg/m³) ≤排放浓度<250μmol/m	ol (408mg/m³)时,相对误差不超过=30%					
			排放浓度<500μmol/mol(82mg/m³)时,绝对设	差不超过±15μmol/mol(24mg/m³)					
H		示值误差	不超过±5%(相对于标准气体标称值)						
det		系统响应时间	≤200s	The second secon					
氧 气 CM	O ₂	零点源移、量 程課移	不超过±2.5%						
S		hate with sider	>5,0%, 相对准确度≤15%						
		准确度	≤5.0%, 绝对误差不超过±1.0%	na de la constitución de la cons					

续表 3-2 CEMS 验收比对技术要求

检测项目			技术要求						
版 粒 物 数	-	零点漂移、量 程漂移	不超过±2%F.S.						
物 C	粒		排放浓度≤10mg/m³,绝对误差不超过±5mg/m³;						
E 物 M S	489	准确度	10 mg/m³<排放浓度≤20mg/m³ 时,绝对误差不超 过±6mg/m³。						
縦速 で で		精密度	≤5%						
	统	相关系数	≥9 个数据时,相关系数≥0.90						
C M S	速	VE MAIN	流速>10m/s,相对误差不超过±10%	18					
80		准确度	流速≤10m/s。相对误差不超过±12%						
温度CMS	温度	绝对误差	不超过=3℃						
il.	湿	Contractive of	烟气湿度>5.0%,相对误差不超过±25%						
C M S	C M		准确度	烟气湿度≤5.0%,绝对误差不超过±1.5%					

3.3 比对结果

企业名称:上杭红新能源科技有限公司 安装位置: 焚烧炉!

安装位置: 焚烧炉 H2 排放口 (即 30173-2) 排气

何出口

检测单位: 福建安格思安全环保科技有限公司 检

检测日期:2024年02月01日-02日

CEMS 供应商:聚光科技(杭州)股份有限公司

仪器名称	设备型	i.	制造商	雅	60	9	制量方法
温度	TPT-100		69,427,140	0-400°C			00/电容、
流速	11-10	y	3	0-40	m/s	- 6	皮托管
湿度				0-4	0%	湿度	极限电流法
- And Charles	版化磁		TOURS	0.200		傅立	叶变换红外
74.16.66			聚光科技 (杭州)股份有	0~2001	ng/m3		光谱法
氮氧化物	FT-100	ř.	限公司	0~230t	ng/m3	4000	叶变换红外 光谱法
一氧化碳				0~200	ng/m3	355.00	叶变换红外 光谱法
氮化氢				0-120	ng/m3	1.0	叶变换红外 光谱法
含氧量	HMS-20	0		0~2	5%	氧化锆法	
颗粒物	Synspec I	M	Synspec	0~60п	ng/m3	激	光散射法
	零点漂移、量程	漂移、示值;	吴差、系统响应时间	准确度	验收结束	Į.	
1)	自名称	11.00	技术要求		检测的	古果	是否符合
二氧化硫	零点源移		0%		符合		
	量程漂移		0.47%		符合		
	示值误差		-0.81	96	符合		
	系统响应时间	- Commence	809	9	符合		
	准确度	排放浓度	误差不	1.4mg	/m³	符合	
	零点漂移	超过±17mg/m³ 不超过±2.5%			0%		符合
	量程源移		不超过±2.5%			%	符合
氮氧化物	示值误差		0.89	%	符合		
	系统响应时间		110	ls	符合		
	准确度	41mg/m³≤	14.7	%	符合		
1	零点源後		不超过±2.5%		0%	1	符合
	量程源基		不超过±2.5%		-0.96	5%	符合
一氧化碳	示值误差		不超过±2.5%		1.93	%	符合
11,200	系统响应时间		≤200s		68	5	符合
	准确度	排放浓度 超过±8mg	<25mg/m³ 时,绝对 g/m³	吳差不	0.6mg	/m³	符合
	零点漂移	不超过±2	The second secon		0%	,	符合
	量程築移	不超过=2	.5%		0.04	%	符合
氯化氮	示值误差	不超过±2	.5%		1.49	%	符合
are POSSE	系统响应时间	≤400s			79:	s	符合
	准确度	排放浓度 超过±24m	<82mg/m³时,绝对 ng/m³	误差不	-1.5mg	g/m³	符合
含氣量	零点源移		不超过±2.5%				符合

	量程源移	不超过±2.5%	0.10%	符合		
	示值误差	±5% (相对于标准气体标称值)	-2.71%	符合		
	系統响应时间	<200s	34s	符合		
			13.8%			
	准确度	>5.0%、相对准确度≤15%	10/10/00	符合		
	零点源移	不超过+2.0%	0%	符合		
顆粒物	量程課移	不超过±2.0%	0%	符合		
	确度	排放浓度≤10mg/m³, 绝对误差不超过 +5mg/m³	-0.1mg/m ³	符合		
流速	准确度	相对误差不超过±10%	-0.90%	符合		
温度	绝对误差	不超过±3℃	-0.04°C	符合		
湿度	准确度	相对误差不超过+25%	-0.41%	符合		
	果为监测站房与采标	求,比对合格。对监赛站房与采样点之间 举点之间距离 27 米,符合《固定污染源烟》 现范》(HJ75-2017)内容规定的监赛站房与 建70m 的规定。	≒ (SO ₂ , NO	x、颗粒物		
	示准气体名称	浓度值	生产厂	商名称		
二章	(化硫 (mg/m³)	172(高)、113.71(中)、57.14(低	0			
	(化氮 (mg/m³)	199.6(高)、125(中)、60.1(低	199.6(高)、125(中)、60.1(低) 济南德洋特特			
二年	(化氦 (mg/m³)	45.4(高),29.37(中),11.29(低	45.4(高),29.37(中),11.29(低) 限公司			
	(化碳 (mg/m³)	181.3(高)、110(中)、50.4(低	181.3 (高)、110 (中)、50.4 (低) 安徽强源气			
氣	化氢(mg/m³)		1	公司 飞体有限:		
	Leader and and	115.7(高)、70.7(中)、27.86(低	4	公司 气体有限: 司		
	類气 (%)	115.7(高)、70.7(中)、27.86(低 20.91(高)、13.5(中)、6.01(低) 福建南安/	公司 气体有限: 司		
参比測试项 仅器生产商) 福建南安/	公司 气体有限。 司 市成功气(
参比測试项 目	類气 (%) 類气 (%)	20,91(高)、13,5(中)、6.01(低) 福建南安7 有限	公司 气体有限。 司 市成功气(
П	類气 (%) 類气 (%)	20.91(高)、13.5(中)、6.01(低 99.999(零气) 型号) 福建南安T () 福建南安T 有限	公司 汽体有限。 司 中成功气(公司 依据		
	類气 (%) 類气 (%) 仪器生产商 奥豪斯仪器 (常)	20,91(高)、13,5(中)、6.01(任 99,999(零气) 型号 十万分之一天平) 福建南安T () 福建南安T 有限	公司 气体有限公司 市成功气(
П	類气(%) 類气(%)	20.91(高)、13.5(中)、6.01(低 99.999(零气) 型号 十万分之一天平) 福建南安T () 福建南安T 有限	公司 汽体有限。 司 中成功气(公司 依据		
目 顆粒物 二氧化硫 氮氧化物	類气(%) 類气(%)	20.91(高)、13.5(中)、6.01(任 99.999(零气) 型号 十万分之一天平 *有 恒温恒湿手动称重系统	(7) 福建南安市 有限 方法	公司 汽体有限公司 市成功气(公司		
日 顆粒物 二氧化硫 氮氧化物 氧气	類气(%) 類气(%) 仪器生产商 奥豪斯仪器(常) 有限公司 青路容广电子技2 限公司	20,91(高)、13,5(中)、6.01(任 99,999(零气) 型号 十万分之一天平 作有 恒温恒湿手动称重系统	(1) 福建南安河 有限 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	公司 有限。 有限。 方式可 方式可 方式可 依据 量法 学法		
目 顆粒物 二氧化硫 氮氧化物	類气(%) 類气(%) 仪器生产商 奧泰斯仪器(常) 有限公司 青路容广电子校2 限公司 青岛崎应环境科1	20.91 (高)、13.5 (中)、6.01 (任 99.999 (零气) 型号 十万分之一天平 **有 恒温恒湿手动称重系统	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	公司 气体有限。 同时成功气化 依据 使据		

说这		Children of the Control of the Contr	S型皮托管
氯化氢	天津市天科玻璃仪器 制造有限公司	簿定管	纳氏试剂分光光度法
备注:	本报告氦氧化物以NO ₂ 计	; 均以一氧化氮特化,特化公	式:NO*1,53=NO ₂ 。

4 质量保证及质量控制

比对监测所使用的检测仪器均经过计量部门检定合格并在有效期内。 为了保证监测数据的准确性和有效性,监测前对使用的仪器均进行浓度校准,按规定对废气测试仪进行现场检漏,采样和分析过程严格按照《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)、《固定污染源监测质量保证与质量控制技术规范(试行)》(HJ/T 373-2007)和《固定源废气监测技术规范》(HJ/T 397-2007)执行。本次监测所有的记录和监测数据严格实行三级审核制度。

5 附件

附件1气态污染物 CEMS (二氧化硫) 示值误差、系统响应时间、零点、量程漂移和准确度检测

附件 2 气态污染物 CEMS (一氧化氮) 示值误差、系统响应时间、零点、量程漂移和 (氮氧化物) 准确度检测

附件 3 气态污染物 CEMS (一氧化碳) 示值误差、系统响应时间、零点、量程漂移和 (氦氧化物) 准确度检测

附件 4 气态污染物 CEMS (氯化氢) 示值误差、系统响应时间、零点、 量程漂移和 (氦氧化物) 准确度检测

附件 5 附件 6 气态污染物 CEMS (氧气) 示值误差、系统响应时间、 零点、量程源移和准确度检测

附件 6 颗粒物 CEMS 零点、量程漂移和准确度检测

附件7参比方法评估流速 CMS 准确度

附件 8 参比方法评估烟气温度 CMS 准确度

附件9参比方法评估湿度 CMS 准确度

附件 10 验收比对报告

附件 11CEMS 设备检测报告

附件 12 试运行报告

附件 13 站房及配套设施照片

附件14运维规章制度

附件 15 联网测试报告

附件 16 运行维护台账

附件 17 验收意见

附件18 专家复审意见

附件1气态污染物 CEMS (二氧化硫) 示值误差、系统响应时间、零点、 量程漂移和准确度检测

附表 1-1 气态污染物 CEMS (二氧化硫) 示值误差和系统响应时间检测

	标准气体参	CEMS 显示	CEMS 显示	示值误差					
序号	お他(中参	CEMS SEAN	值得平均值	小组决定 (%)		測定值		平均值	
	- OIT	181	IRAG L volum	0.297	TI	T2	T=T1+T2	1.49.18	
1		170.817		2000000	37	44	81		
2	172.3	170.308	170.686	-0.81	36	43	79	80	
3		170,933	3			28	52	80	
4	F 1777/1984.22	115.475	- movement	No.	34	45	79	A CONTRACTOR OF THE PARTY OF TH	
5	113.7	114.808	115.042	0.67	0.67 38 40	78	80		
6		114.842			41	42	83		
7		57.467			31	50	81		
8	57.14	58.142	57.972	0.42	33	47	80	78	
9		58.308			34	40	74		

附表 1-2 气态污染物 CEMS (二氧化硫) 零点和量程源移检测

	计量单位	(mg/m³)	时间	计量单位 (mg/m³)		
P) [4]	零点读数	零点原移绝 对误差		星程读数	量程漂移绝 对误差	备注

开始	结束	起始 (Z ₀)	最終 (Zi)	$\triangle Z = Z_i - Z_0$	开始	结束	- 起始 - (S ₂)	最终 (Si)	△S=S _i -S ₀	
2024.02.03 09:40	2024.02.03 18:16	0	0	0	2024.02.03 10:03	2024.02.03 18:31	170.492	171.433	0.941	-
零点漂移绝对误差最大值(mg/m²)			0	量程漂移绝对误差最大值(mg/m³)			0.941			
零点源移(%)			0		量程漂移	(%)		0.47		

购表 1-3 参比 。	方法评估气态污染物	CEMS (-	領(小帝) 准确度
MIT ADD THE PART PARTY	OF TAXABLE IN THE STREET, AND ADDRESS OF TAXABLE PARTY.	Carried Comments	- 10% F1. (100) 2 THE WHITE

测试日期	序号	时间(时、分)	参比方法	対量債 A	CEMS 測量	值B	数据对差 =B-A
	1	10:48~10:53	N	0	7.749		6.249
	2	10:56-11:01	N)	21.991		20.491
	3	11:12-11:17	2	r	11.700		-9.300
	4	11:34~11:39	5	8	2.004		-2.996
	5	11:41~11:46	4		1.897		-2.103
	6	11:57-12:02	NI	D	1.660		0.160
	7	12:12-12:17	4	1	6.533		2.533
20240202	8	12:46-12:51	NI	0	1.938		0.438
2024.02.03	9	13:25~13:30	N)	1.879		0.379
		平均值	5		6.372		1.372
	数据对法	克的平均值的绝对值			1.372		1000
	数据	对差的标准偏差	8 1-		8.20%		
		置倍系数			6.30		
	- 3	相对准确度			174.86%		110
		绝对误差			1.4		TO ME
		相对误差			16.03%		1600
		Part L	Jet inc Air	参出方	法额量值	相对设	差 (%)
		名称	保证值	采样前	采样后	采样前	采样后
标准气体		T-100	57.14	56.3	58.1	-1.5	1.7
		二氧化硫	113.71	111.4	114.9	-2.0	1.0
			172	170.6	176.4	-0.8	2.6

附件 2 气态污染物 CEMS (一氧化氮) 示值误差、系统响应时间、零点、量程漂移和 (氦氧化物) 准确度检测

附表 2-1 气态污染物 CEMS (一氧化氮) 示值误差和系统响应时间检测

	1- ste by LL 4s	000.40	CENTE E	示值误差		系统响	应时间 (s)	
序号	标准气体参	CEMS 显示值	CEMS 显示 值得平均值	(%)		規定值		平均值
	考值	H NEWYOLD IN	istia i vaist		TI	T2	T=T1+T2	1.84 10
1		200.608		-0.12	29	46	81	
2	200.9	200.833	200.633		30	48	79	80
3	- 0.19181700	200.458	10.822.000		28	49	80	
4		125.683			31	45	79	
5	125	126.033	125.675	0.29	29	48	78	80
6	12 PAVS	125.308	N/6907/Y/S/08/	510517	27	41	83	10110
7	0	61.758			32	43	81	
8	60.1	61.808	61.786	0.73	30	47	80	78
9	2500000	61.792	35000 6000	00000	27	52	74	711/00

附表 2-2 气态污染物 CEMS (一氧化氮) 零点和量程漂移检测

	1935	it	東単位(mg/m³)		1225	计量	単位(mg	g/m ³)	
В	1何	零点	读数	零点漂移绝 对误差	- B	间	量程	读数	量程源移绝 对误差	
开始	結束	起始 (Z ₀)	最終 (Z _i)	△Z= Z _i -Z ₀	开始	结束	起始 (S ₀)	最终 (S _i)	△S=S _i -S ₀	备注
2024.02.03 09:40	2024.02.03 18:16	0	0	0	2024.02.03 09:56	2024.02.03 18:24	200.192	200.017	-0.175	-
零点源	多绝对误差最大	大値 (mg	/m³)	0	量程源	移绝对误差最	大值(mg	/m ³)	0.175	
	零点漂移(%)		0		量程漂移	(%)		-0.08	

财表 2.3 参比方法评估何态污染物 CEMS (复复化物) 准确度

测试日期	序号	时间(时、分)	参比方法测量值 A	CEMS 測量值 B	数据对差 =B-A
*	1	10:48~10:53	70	92.394	22.394
	2	10:56~11:01	83	112.236	29.236
	3	11:12~11:17	86	113.932	27.932
	4	11:34~11:39	126	153.705	27.705
2024.02.03	5	11:41-11:46	74	101.128	27.128
	6	11:57-12:02	75	107.623	32.623
	7	12:12~12:17	75	96.133	21.133
-4-4	8	12:46-12:51	43	61.725	18.725
	9	13:25-13:30	29	49.550	20.550

	平均值	7.	3	98.714		25.714
	数据对差的平均值的绝对值	WHEN	emin.	25.714		
	数据对差的标准偏差	1.07		4.70%		
	置信系数	DI T		3.61		
	相对准确度			39,3%		
	绝对误差			25.7		
	相对误差			14.7%		
	名称	保证值	参比方法	去测量值	相对误	煌 (%)
	名称	DESIL'14	采样前	采样后	采样前	采样后
标准气体	0	60.1	60.8	62.1	1.2	3.3
	一氧化氮	125	124.8	124.4	-0.2	-0.5
		199.6	197.3	201.3	-1.2	0.9

附件 3CEMS (一氧化碳) 示值误差、系统响应时间、零点、量程漂移和 准确度检测

附表 3-1CEMS (一氧化碳) 示值误差和系统响应时间检测

	According for (A) sign	CEMS	CEMS 显示	示值误差					
序号	标准气体参 考值	显示值	值得平均值	(%)		測定值	0.	平均值	
	-4/101	312/1/198	1014 L×40	1,707	TI	T2	T=T1+T2	1 vs in	
1		182.97		-885 /4	19	51	70	250	
2	181	183.925	183.462	183,462	1.23	16	48	64	66
3		183,492			17	46	63		
4		109.483			18	50	68	ATTY IN	
5	110	108.292	108.926	-0.53	16	49	65.	66	
6	1000000	109.033			17	47	64		
7		53.95	5 Backeso	Tomas El	20	53	73	10.10	
8	50.4	54.383	54.25	1.93	18	48	66	68	
9		54.417			19	46	65		

附表 3-2 气态污染物 CEMS (一氧化碳) 零点和量程漂移检测

	24200	111	量单位(mg/m³)	132		計畫	单位(mg	g/m ³ >	
D.	tin .	零点	读数	零点漂移绝 对误差	В	加	量程	读数	量程源移绝 对误差	Die.
开始	结束	起始 (Z ₀)	最终 (Z _i)	△Z= Z _i -Z ₀	开始	结束	起始 (S ₀)	最終 (Si)	$\triangle S = S_i - S_0$	备注
2023.02.03 09:40	2023.02.03 18:16	0	0	0	2024.02.03 09:50	2024.02.03 18:37	183.025	181,108	-1.917	-
零点源	多绝对误差最大	大俊 (mg	/m³)	0	量程源	移绝对误差最	大值(mg	/m ³)	1.917	
	学点编移(%)		0		量程漂移	(%)		-0.96	100

附表 3-3 参比方法评估气态污染物 CEMS (一氧化碳) 准确度

测试日期	序号	时间(时、分)	参比方法	測量值 A	CEMS 須量	值B	数据对差 =B-A
	1	10:48~10:53	N	D	2.551		1.051
	2	10:56-11:01	ND		0.871		-0.629
	3	11:12-11:17	N	D	1.081		-0.419
	4	11:34~11:39	N	D	0.974		-0.526
	5	11:41~11:46	N	D	1.820		0.320
	6	11:57~12:02	N	D	2.428		0.928
	7 :	12:12-12:17	N	D	3.305		1.805
2024.02.22	8	12:46-12:51	7	į.	7,119		0.119
2024.02.22	9	13:25-13:30	ND		3.294		1.794
		平均值	2		2.605		0.605
	数据对法	差的平均值的绝对值		14.31	0.605		
	数据	对差的标准偏差			0.95%		7 10
		置信系数			0.73		
		相对准确度			58.0%		
		绝对误差			0.6		
		相对误差			10.5%	V) to	
	- 4	名称	保证值	参比方	法测量值	相对误	差 (%)
		台 称	DE RESTEL	采样前	采样后	采样前	采样后
标准气体			50.4	48.8	51.1	-3.2	1.4
		一氧化碳	110	110.3	114.9	0,3	4.5
			181.3	180.2	183.5	-0.6	1.2

注: ND 表示检测结果低于方法检出限, 计算以检出限的 1/2 参与统计。

附件 4CEMS (氯化氢) 示值误差、系统响应时间、零点、量程漂移和准确度检测

附表 4-1CEMS (氯化氢) 示值误差和系统响应时间检测

	标准气体参	CEMS	CEMS 显示	示值误差		系统响	系统响应时间(s)			
序号		显示值 值得平均值		(%)		平均值				
· 李拉 · · · · · · · · · · · · · · · · · ·	3E2小匠 田13-1-73-四	7.50%	TI	T2	T=T1+T2	TAME				
1		115.292			30	49	79	256(00)		
2	115.7	116.267	115,795	0.08	28	48	76	79		
3	5,000	115,825		10000000	32	51	83			

4	1.26690	72,767		900009000	31	50	81	
5	70.7	72.775	72.489	1.49	31	43	74	76
6		71.925	72,402		26	48	74	
7		27.775		1 - 8	33	47	80	
8	27.4	28.8	28,369	0.81	26	53	79	78
9		28.533	5 531000		27	48	75	

附表 4-2 气态污染物 CEMS (氯化氢) 零点和量程漂移检测

	55	iH	量单位 (mg/m³)			计量	单位(m	g/m ³)	
B	才何	零点	读数	写点源移绝 对误差	B	村间	量程	读数	量程源移绝 对误差	300
开始	结束	延始 (Z ₀)	最終 (Z _i)	△Z= Z _i -Z ₀	开始	结束	起始 (S ₀)	最终 (S _i)	△S= S _i -S ₀	各注
2024.02.03 09:40	2024.02.03 18:16	0	0	0	2024. 02. 0310:14	2024.02.03 18:55	117.217	117.267	0.050	Te de
零点罩衫	多绝对误差最。	大值 (mg	/m ⁵)	0	量程源	移绝对误差最	大值(mg	m³)	0.050	
	零点原移(%)		0		量程源移	(%)		0.04	E

附表 4-3 参比方法评估气态污染物 CEMS (氯化氢) 准确度

测试日期	序号	时间(时、分)	参比方法測量值 A	CEMS 利量值 B	数据对差 =B-A
	18	10:39~10:54	18.4	17.165	-1.235
	2	10:55~11:10	41.3	39.169	-2.131
	3	11:10-11:25	43.1	39.786	-3.314
200	4	11:26~11:41	28.7	28,550	-0.150
	5	11:42-11:57	13.4	12.079	-1.321
2024.02.03	6	11:57-12:13	16.7	15.846	-0.854
2024.02.03	7	12:13-12:28	22.7	20.982	-1.718
	8	12:29-12:44	13.3	12,077	-1.223
	9	12:45~13:00	14.4	13.723	-0.677
		平均值	23.6	22.153	-1.447
	数据对象	差的平均值的绝对值		1,447	- Kurat
4 134	数据	对差的标准偏差		0.92%	

置信系数	0.71	
相对准确度	8.95%	
绝对误差	-1.5	
相对误差	-3.07%	

附件 5CEMS(含氧量)示值误差、系统响应时间、零点、量程漂移和准确度检测

附表 5-1CEMS(含氧量)示值误差和系统响应时间检测

esecuri.	ACTABLE SET OF	CEMS 显示	CEMS 显示	示值误差		系统响	应时间 (s)	
序号	标准气体参	位 位	值得平均值	(%)		測定值	(1)	平均值
考值	THL.	関係上が匿	7.507	TI	T2	T=T1-T2	1 79 33	
1		20.9			6	23	29	
2	20.91	20.897	20.899	-0.05	5	21	26	28
3	2 22/2022	20.9	process over	- Verrolen	6	22	28	
4	G Wileson	13.309	0+350,000	W00000	7	24	31	a wex
5	13.5	13.356	13.356	-1.07	- 5	22	27	30
6		13.403			5	26	31	
7		5.883			8	24	32	
8	6.01	5.836	5.847	-2.71	6	26	32	34
9	New York	5.823	20,511	30,000	6	33	39	

附表 5-2CEMS (含氧量) 零点和量程漂移检测

	200	itt	量单位 (mg/m³)	500	200	计星	単位(m	g/m³)	
B	j (E)	零点	读数	零点漂移绝 对误差	B	ffi	量程	读数	量程源移绝 对误差	
开始	結束	起始 (Z ₀)	最终 (Z _c)	$\triangle Z = Z_i - Z_0$	开始	结束	起始 (S ₀)	最终 (S:)	△S= S ₂ -S ₀	各計
2024.02.03 09:15	2024.02.03 19:22	0.05	0.05	0	2024.02.03 09:24	2024.02.03 19:28	20.849	20.897	0.048	-
孝点读和	多绝对误差最大	大値(mg	/m³)	0	量程源	移絶对误差最	大值(mg	/m³)	0.048	
- 11	零点源律(%)		0		量程源移	(%)		0.10	

附表 5-3 参比方法评估气 CEMS (含氧量) 准确度

测试日期	序号	时间(时、分)	参比方法测量值 A	CEMS 類量值 B	数据对差 =B-A
	- 1	10:48-10:53	5.90	7.192	1.292
2024 02 02	2	10:56-11:01	6.60	7.191	0.591
2024.02.03	3	11:12~11:17	7.00	7.729	0.729
	4	11:34~11:39	6.80	7.582	0.782

			AND A	THE STATE OF THE S			
	5	11:41~11:46	8.		8.431		0.431
	6	11:57~12:02	8.	30	8.522		0.222
	7	12:12~12:17	7.	40	8.443		1.043
	8	12:46-12:51	8.0	60	8.804		0.204
	9	13:25~13:30	7.	30	8.424		1.124
		平均值	7.3	32	8,035		0.715
	数据对差	食的平均值的绝对值			0.715		W.
	数据	对差的标准偏差			0.39%		
		置信系数			0.30		
		相对准确度	*		13.8%		
		绝对误差			0.7		
		相对误差		At-	4,6%	44	
		名称	保证值	参比方法	去测量值	相对误	差 (%)
		43 (0)	OKKLIN	采样前	采样后	采样前	采样后
标准气体			6.01	6.1	6.3	1.5	4.8
		氧气	13,5	13.4	13.8	-0.7	2.2
			20.9	20.8	20.7	-0.5	-1.0

附件 6 颗粒物 CEMS 零点、量程漂移和准确度检测

附表 6-1 颗粒物 CEMS 零点和量程漂移检测

		it	量单位(mg/m³)		200	计量	k单位(n	ig/m³)	
B	才何	零点	读数	写点漂移绝 对误差	· ·	t (e)	量程	读数	量程源移绝 对误差	
开始	结束	起始 (Z ₀)	最終 (Z _c)	△Z= Z ₍ -Z ₀	开始	结束	起始 (S ₀)	最終 (S _i)	△S= S _r -S ₀	备注
2024.02.03 09:00	2024.02.03 19:14	0,08	0.08	0	2024.02.03 09:21	2024,02.03 19:19	60	60	0	1
零点漂亮	多绝对误差最大	大値(mg	/m ⁵)	0	量程源	移绝对误差最	大值(mg	/m ³)	0	
	零点源移(%)		0		量程源移((%)		0	8

附表 6-2 颗粒物 CEMS 准确度检测

	T #9 84/61		参比方法					颗粒物
日期	时间	序号	采样头编号	顆粒物質 (mg)	标于体积 (L)	浓度 (mg/m³)	测定值 (mg/m ³)	颜色

绝对误差	(mg/m^3)				-0.1			
	16:19-16:53	5	12401141	0.26	1018.5	ND	1.073	无色
	15:41-16:15	4	12401126	0.42	1023.4	ND	0.252	无色
2024.02.03	15:07~15:38	3	12401160	0.35	1050.8	ND	0.163	无色
	14:32~15:02	2	12401122	0,25	1024.2	ND	0.156	无色
	13:50-14:23	1	12401192	0.36	1027.8	ND	0.154	无色

附件7参比方法评估流速 CMS 准确度

附表 7 参比方法评估流速 CMS 准确度

日期 方言	方法 1	測定次数									日平均
		1	2	3	4	5	6	7	8	9	值
2024.02.03	参比方法	12.33	12.38	12.51	12.38	12.44	12.65	12.89	12.83	12.59	12.60
2024.02.03	CMS	12.129	12.151	12.301	12.241	12.300	12,498	12,449	12,466	12.452	12.332
绝对说	吴差(m/s)		-0.2		相	付误差 (9	6)		-0.90	

附件 8 参比方法评估烟温 CMS 准确度

附表 8 参比方法评估烟温 CMS 准确度

日期	序号	时间	参比方法 A (℃)	CEMS 法B(℃)	数据对差=B-A (°C)
	1	16:57-17:00	139,4	138.355	-1.045
	2	17:00-17:03	138,4	138.291	-0.109
	3	17:04-17:07	138,9	138.513	-0.387
	4	17:08-17:11	138.6	138,644	0.044
2024.02.03	5	17:12~17:15	138,5	138.842	0.342
	6	17:16~17:19	139.1	139,098	-0.002
	7	17:20~17:23	138.6	139,333	0.733
	8	17:24~17:27	138.7	139.521	0.821
	9	17:28-17:31	139.7	139.671	-0.029

烟湿绝对误差 (℃) -0.04

附件9参比方法评估烟气湿度 CMS 准确度

附表 10 参比方法评估烟气湿度 CMS 准确度

日期	序号	时间	参比方法 A (%)	CEMS 法B(%)	数据对差=B-A (%)
	1	16:57~17:00	20,16	20.354	0.194
	2	17:00-17:03	19.87	19.883	0.013
	3	17:04-17:07	20.45	20.817	0.367
	4	17:08-17:11	20.55	20.574	0.024
2024.02.02	5	17:12-17:15	20.59	20.806	0.216
2024.02.03	6	17:16-17:19	20.69	20.879	0.189
	7	17:20~17:23	20.72	20.662	-0.058
	8	17:24~17:27	20.42	20.915	0.495
	9	17:28~17:31	21.42	21.488	0.068
	湿度相对	误差 (%)		-0.41	

附件 10 比对验收报告

固定污染源烟气排放连续监测系统 (CEMS)验收比对监测报告

报告编号: XA-TC-20240162

委托单位: 上杭红新能源科技有限公司

受检单位: 上杭红新能源科技有限公司

样品类别: 废气

检测类别: 比对检测

报告日期: 2024年03月04日

A DEST

报告编号: KA-TC-20140162

报告说明

- 报告无本公司的检验检测专用章、转缝章无效。报告任何形式的涂改、增剩、盗用、 转让均无效。
- 2. 报告无编制人、审核人和形准人签字无效。
- 3. 未经本公司书面批准,不得部分复制检测报告。
- 委托单位若对报告有异议, 应于收到检测报告之目起十五日内尚本公司提出。滄翔未 提出异议的, 视为承认检测结果。
- 对各户这样的委托检测仅对来样负责。未经本公司同意,委托单位不将横自使用检测 根由进行不当宣传。
- 本公司接受的委托送检,若无特别说明,生产单位及样品的相关信息未经本公司跳认,信息的真实性由委托单位负责。

地址: 中国(福建)自由贸易试验区厦门片区(张校港区)海景路 268 号 1#楼 310-315 室

图址 www.xmadvance.com

电话: 0592-5790408

位重: 0592-5790409

邮線: 361026

机新制造

批 雅学 身長 登级日期: 2024-03-04

思生用共27克

使用编号-XA-TC-20240161

检测报告

一、检测概况

1. 埃目基本情况

上杭洪新修陶科技有限公司位于福建省上杭县株装镇土州村男子存落 10 号。爱上琉港新能能利 技有财公司委托。提用于 2024 年 62 月 62 日~3 日组织技术人员按照相关技术级亚对上杭洪斯斯赛辛 技有联公司的隔价规则排放口 2r (FQ-303173-2) 的在线出制设备进行检收比对检测。

3. 即日基本金0

上抗克斯拉姆科技有限公司協幹經施清核口 2# (PQ-303175-2) 的 CBMS 基本参数情况。参比方法 基本情况及使用功能气情就见下去。

表 1 CEMS 基本参数情况表

因点位置		報約短	的排放口 28 (FQ-30	03175-2)		
效器名称	数号	出厂编号	CEMS 推走原则	生产厂家	SHERR	
温度	TPT-100	753P228000C	Pr100电容。 维压法		0-400°C	
30.90	13.1402		皮托管		0-40m/s	
級度			澤度級與电流統		0-40%	
二氧化碳			傅立叶变换红外 光谱法	探光有技	0-200mg/m	
夏氧化物	FT-100	473P2360001	博立叶变换红外 先音法	(杭州) 股份有 混公司	0-230mg/m	
一氧化体				標立叶变换红外 充透祛		0-200mg/m
氧化氮			例立叶变换红外 光谱法		0~120mg/m	
金属版	HMS-200	Y22090178	机化物法		0~25%	
With.	Synspec PM	456P2290012	源光散射法	Synspec	0-60mg/m ³	

图 3 页 14.27 页

Charles and the Company

部合編号:XA-TC-2524016

表 2 参比方法基本参数情况表

样品类说	绘图项目	也獨方法	校器的称及 管理编号	参比方法	方法 校出別
	14000	发定污染液和气中颗粒物质 定与气态污染物液样方法 GB/T 16157-1996	大流量低浓度增生产 测试仪 3012H-D-D XA-TC-YQ-139	皮托育法	
	程度	固定污染器排气中颗粒物到 应与气态污染物采样方法 GB/T16157-1996	大京皇伝承度昭生/气 河域仪 3012H-D-D XA-TC-YQ-139	格电摄法	127
	ism	固定污染液排气中聚粒物流 定均气态污染物采样方法 GB/T 16157-1996	大流量低浓度增生/气 测试仪 3012H-D-D XA-TC-YQ-139	干描球法	1
	含氧量	選定行条節指气中期較物調 定与气态行录物采样方法 GB/T 16157-1996	大流量低浓度烟尘/气 测试仅 3012H-D-D XA-TC-YQ-139	电化学法	g.
度气	二氧化硫	固定污染领责气 二氧化嗪 的测定 定电位电解法 HJ 57-2017	大流量伝統度標準/气 形式仪 3012H-D-D XA-TC-YQ-139	定电位 电解法	Jang'm'
	氯氧化物	固定污染释放气 製具化物 的测定 定电位电解法 HJ 693-2014	大波蘭低浓度剛生/气 測试仪 3012H-D-D XA-TC-YQ-139	定电效 电解法	3mg/m ³
	一無化碳	固定污染薄度气 一氧化碳 約湖定 定由位电解法 HJ 973-2018	大波電低液度烟朵/气 測试仪 3012H-D-D XA-TC-YQ-139	定电位 电解法	3mg/m ³
	低年度版 拉物	固定污染损废气 伍浓度模 粒物的衰定 重量法 HJ836-2017	1 万分之一天甲 XA-TC-YQ-067 但是恒星手动称最系统 XA-TC-YQ-140	重量法	lmg/m ³
	無化集	定污染湿度气 氧化氢的侧 定 研除银容量法 HJ 548-2016	25,00ml 棕色酸性病定管 XA-TC-YQ-865-26	容量法	4.3mg/m

St 4 II JL 27 JI

报告编号: XA-TC-20040161

表3 所用标准气体参数表

标准气体名绘	气焰扇号	浓度值	生产厂緊答等
SO ₂	2206802063	57.14mg/m ⁴	安徽强聚气体有限公司
502	230003513	313.71mg/m ³	安徽建筑气体有集公司
502	231/127C902	172mg/m ³	济南德洋特种气体有限公司
NO	2209810122	60.1mg/m ¹	安徽建築气体有混公司
NO	203805005	125mg/m ⁵	安徽强源气体有限公司
NO	231026C171	199.6mg/m ³	济南德洋特种气体有限公司
NO ₂	231027C274	11.29mg/m ³	洛国提洋特种气体有限公司
NO ₂	2311270033	29.37mg/m²	济南德洋特种气体有混合司
NO ₂	2311270055	45.4mg/m ³	济阳密洋特种气体有限公司
CO	1.295410189	50.4mg/m ³	安徽强领气体有限公司
CO	QW24139	110mg/m ³	安徽强领气体有限公司
00	231027C012	181.3mg/m ³	经南德焊特种气体有限公司
HCI	231129C134	70.7mg/m ³	泛密密焊特件气体有限公司
HCI	231027C228	27.86mg/m ³	济南德泽特种气体有限公司
HCI	231027C227	135.7mg/m ³	济海旋护特种气体有限公司
Oi	231027C188	6.01%	济南推洋特种气体有限公司
O ₂	1.216602172	13.5%	福建高安市成功气体有限公司
O ₂	2300402103	20.91%	安康强源气体有限公司

二、检测依据

- (1) 《請定污染課簿气(SO₂、NO₃、粉約物) 持放建航台测技术设置》(HJ 75-2017)。(2) 《固定污染票值气(SO₂、NO₃、颗粒物) 持放连线数据系统技术要求及控制方法》 (HJ76-2017) 1
- (3) (固定污染媒体气中颗粒物测定与气态污染物采样方法) (GBT 16157-1996.); (4) (关于初题生活垃圾餐场发电厂自动趋效和坐控构法工作的通知) (环办执法[2019]84 号附件 2-2019.12.26) +

三、调试检测技术指标

丰次调试核源技术指标依据《简定污染资烟气(SO₅, MO₈)、颗粒物) 非效论线验测技术规范》 (RJ75-2017) 中表 A.3、《关于加强生活垃圾装造发电厂自动信控和高控块法工作的途知》《环办块 走[2019]64 号附件 2。2019.12.26)要求设置为 SO₂、NO₃、CO、HCl、氧气CMS、照帕特 CEMS、高 述 CMS、温度 CMS、设度 CMS十个多数,参数指标要求证见如下表 4。

W 5 G JL 27 M

报告编号: XA-TC-20240163

表 4 CEMS 谓试检测技术指标要求

B)	项目		技术资业
		示值误整	自满重程》100µmci/mil (286mg/m²) 时,示值淡蒸不相过±5%(相对于标准气体标准的 自满重程《100µmcl/mol (286mg/m²) 时,示值淡差不超过±2.5%(相对十次表词被程值)
		系统构设时间	≤200 ₈
	=	等点维砂、量 程線移	不超线=2.5%
	化化		排放浓度≥250µmolenot (715mg/m)) 时。福对推确度≤15%
	61	油碗度	50pmok/mol (143mg/m²) <排放波度<250pmok/mol (715mg/m²) 对,统划误差不磁出 #20pmok/mol (57mg/m²)
	J.	211111111111111111111111111111111111111	20µmol/mol (57mg/m²) ≤排放架度<50µmol/mol (143mg/m²) 时,相对逐至不超出±305
			排放改度<20µmol/mol(57mg/m ¹)时,绝对误是不超过#funnol/mol(17mg/m ¹)
		示值误差	当籌量程≥200µmol/mol (410mg/m²) 时,示值景要不超过4%(指对于标准气体标卷数) 当演量程<200µmol/mol (410mg/m²) 时,示值误要小器过42.9%(相对于仅套清量超量)
7		系统构改时间	€200s
体分裂	Œ.	写点課移、量 程準移	不超近42.3%
15	領化		排放承援≥250pmal/mol (513mg/m²) 时,相对推确资≤15%
CHA	功		50µmal/mol(100mg/m²)《祥饭茶度<250µmal/mol(513mg/m²)时,能封误某不顧出 ±20µmal/mal(41mg/m²)
9			20μmol/mol (41mg/m²) <排放浓度<50μmol/mol (103mg/m²) 时,积对误差不超出±30%
			排放浓度<20µmol/mol(41mg/m³)时,他划误差不超过±6µmol/mol(12mg/m²)
H		示值调整	告满量程≥200μmol/mol (250mgm*) 时,示值误差不超过±5%(相对于标准气体标释值) 当满量程<200μmol/mol (250mgm*) 时,示值误差不超过±2.5%(相对于依依索量格值)。
		系统电应时间	≤200s
		率点原存、量 程導移	不超过±2.5%
	報化		排放浓度≥250μmol/mol (313mg/m [*]) 时,相对排像度≤15%
	級	准确度	50pmol/moi(63mg/m³)《排飲祭度<250pmol/moi(313mg/m²)財,他對英能不超出 =20pmol/moi(25mg/m³)
		30.55	20gmotimal (25mg/m³) 《建筑波度<50pmotimol (63mg/m³) 时,相对误差不超出±30%
			存货本度<20jumol/mol(25mg/m²) 村,绝对误差不超过±6jumol/mol(8mg/m²)

第 8 代共 27 页

供你破与, XA-TG-2024216

线表点			

		现表4 CEMS II	#试检测技术指标要求	
	绘表項	Б	拉木要求	
		不管以差	為清潔禄>205µmolimos (326mg/m²) 对,示值误差不进过 ±5% (相对于标准气体标准4) : 均清量延<205µmol/mosl (326mg/m²) 时,示值误差不能过 ±2.5% (相对于仅表清量程值);	
		系统响应时间	≤400s	
气体污染物 CEMS	氧化氮	学点等後、量程等移	不适过+2.5%	
			排放旅援≥250µmol/mol(408mg/m²)用; 相对库确度≤15%	
		准确度	50µmol/mol (82mg/m ²) 《推放浓度《250µmol/mol (408mg/m ²) 日,相对误处不相过+30%	
			相當後度<500µmal/mol(82mg/m ³)时,他对视然不過过 ±15µmal/mol(24mg/m ³)	
	Ot	应价效效	不提过±5%(相对于标准气体标移位)	
		系统可以时间	≤200e	
W'\ CMS		学点憑移、能程憑移	不超过*2.5%	
			494	>5.0%,相对非确度<15%
		VEWIGE.	< 5.0%。 她对误然不超过±1.0%	
	板板物	等点证券、兼权准核	不进过±2%F.S.	
期税物 CEMS		1000000	排放浓度5(0mg/m), 绝对误差不超过±5mg/m';	
		市场技	10 mg/m ³ <再放浓度/20mg/m ³ 到,绝对误差不超 过±6mg/m ³ 。	
		精密度	<5%	
NEW CMS	STAN	相关系数	≥9个数据时。相关系数≥0.90	
IEAE COIS	NUE	34.70 mr	连建>10m/s,相对模型不超过m10%	
		推測度	流速率10m/s,相对误差不超过±12%	
混战 CMS	為度	抱时规划	木醛过±3°C	
BI€ CMS	as or	***	基气彻度>5.0%。相对误差不提过425%	
acts rws	more.	祖典度	用气湿度45.0%。绝对谢差不超过±1.5%	

新子克思 22 B

White House and Annual Peace 报告编号: XA-70-20240161 四、验收监测技术指标 表 5.1 颗粒物 CEMS 零点和量程源移检测 利试人员: 王 松、路少里 CEMS 生产厂员: Symper 判试地点: 上京红新邮额科技有限公司 CEMS 恒号: Synspec PM 测试位置。<u>格护规向并放口 29(FO-303173-2)</u> CEMS 原理。 后散射法 计量单位《mg/m³) 计量单位 (mg/m²) 學点類移絕 年点证款 处程设数 对误差 最终 起始 設始 5549 开始 验水 AZ=Z+Z9 开始 禁棄 (Z_4) (24) (S_i) 2024.02.03 2024.02.03 2024.02.03 2024.02.03 0.08 0.08 0 19:14 09:21 19:19 容点療物絶对误差最大值〈mg/m²〉 量程源移绝对误单模大值(mg/m²) 0 表 5.2 参比方法校准驱粒物 CEMS CEMS 生产厂商: Sympec 美试过点,上放红新能源将技有提公司 CEMS 聖号: Synspec PM 期试位置: 据沪规胞接收口 2# (FO-303173-2) CEMS 临题: <u>后散射注</u> 参比方法仪器生产厂商: <u>與豪新仪器(上海)有</u>课公司 類号、编号: 3012H-D-D、XA-TC-YQ-139 原理, 重星法

量程度存在

对误差

△S=5,-S;

0

0 0

roes o			CEMS 注	取积物			
利何	79.	采样头架号	原位物重 (mg)	标干体积 (L)	減度 (mg/m ⁵)	規定值 (mg/m³)	me.
13:50-14:23	1	12401192	0.36	1027.8	ND	0.154	无色
14:32~15:02	2	12401122	0.25	1024.2	ND	0.156	定色
15:07-15:38	1	12401160	0.35	1059.8	ND	0.163	无色
15:41~16:15	4	12401126	0.42	1023.4	ND	0.252	无色
16:19-16:53	5	12401141	0.26	1018.5	ND	1.073	无色
	14:32~15:02 15:07~15:38 15:41~16:15	13:50-14:23 1 14:32-15:02 2 15:07-15:38 1 15:41-16:15 4	13:50-14:23 1 12401192 14:32-15:02 2 12401122 15:07-15:38 1 12401160 15:41~16:15 4 12401126	村所 作	サ 末样失敗号 (mg) (L). 13:50-14:23 1 12401192 0.36 1027.8 14:32-15:02 2 12401122 0.25 1024.2 15:07-15:38 1 12401160 0.35 1050.8 15:41-16:15 4 12401126 0.42 1023.4	時间	計画 作 不祥失缺号 知後物産 松干体积 浓度 減定値 (mg/m²) (L.) (mg/m²) (mg/m²) (13:50-14:23 1 12401192 0.56 1027.8 ND 0.154 14:32-15:02 2 12401122 0.25 1024.2 ND 0.156 15:07-15:38 2 12401160 0.35 1059.8 ND 0.163 15:41-16:15 4 12401126 0.42 1023.4 ND 0.252

新多层 思 27 頁

1	A DESH						163	5665:XA-1	C-20140161			
		表 5.3	气态行	柴物 (二氢)	と数)CEV	IS 零点和量	程源移检	200				
äN	次人员: 王 ·	S. But	la.		CEMS	生产厂商。温	光料技(5	(8) 226	- 新聞公里			
38	改建点: <u>上杭</u>	(新维度	EHX HIS	201	CEMS	M9:	FT-100					
				O-303173-2) (皮傷) 172mg					ma/in!			
			量单位 3					単位 (m				
. 1	190	举力	读版	学点罪移他 対误差	()	時知		財阿		is th	配程課券的 対収差	
开始	结果	起始 (Z ₄)	級終 (Z)	∆Z= Z-Z ₄	开始 松果		起始 (Si)	最終 (S)	∆s=s ₊ s ₉	善注		
2024.02.03 09:40	2024.02.03 18:16	0	- 0	0	2024.02.03 10:03	2024.02.03 18:31	170,492	171.433	0.941	-		
學点類的	8绝对误於最大	kM (mg	pim ⁵)	0	至12:8	硅绝对误差罩	大值 (mp	(m)	0.941			
	等点温移 ()	963		0		2000	1962		0.47			

表 5.4 气态污染物 (一氧化氯) CEMS 零点和量程振移检测

测试人员: 正 松、唇少碧	CEMS 生产厂育: 整套科技(杭州)股份有限公司
群试地点: 上杭红新炸泼科技有报公司	CEMS 世号。
游试位置, 划处组图译放口 2# (FQ-303173-2)	CEMS 原库: 加立时变换红外充谱法
标准气体浓度或校准器件的已知响应值。199.6mgm	n) 污染物名称: 一氧化烷 计量单位: mg/m2

行員 计量单位 (r 写点读数		mg/m ⁵)				華位 (由)				
		50, (2) (0) 20		写点键移给 对误差	时间		量程设数		量程原序络 对说是	
开始	粉果	起始 (Zo)	最終 (Z)	∆Z≈ ZcZq	开始	抗斑	#336 (Sa)	振州 (S)	∆8=8 _i -8 _y	各技
2024.02.03 09:40	2024.02.03 18:16	0	a	0	2024.02.03 09.56	2024,02.03 18:24	200.192	200.017	40.175	
李点流往	9绝对误差最为	ciii (mg	m ^b)	0	推拉施	非代对识别是	大值 (mg	mil)	0.175	
事点源器 (%)		0		星程波林	(%)		-0,08			

期9页页27页

1 Sections of Section States

10	

最近情号:XA70.20240181

表 5.5 气态污染物 (二氧化氯) CEMS 零点和量程源移检测

粉试人员; 王 - 拍、陈少郞	CEMS 生产厂商。整先科技(杭州)股份有限公司
则试地东。上杭松斯能源科技有限公司	CEMS 世号: FT-100
海试位置。据价值支持放口 2e (FO.303173.2)	CEMS NO. OF AN ESSERVISION

計量单位 平点接数		计量单位 (mg/m²)		ES INC		计量单位 (mg/m ³)				
		写点读数 零点课移绝 对误差				报权试验		量程器移発 財英基		
रा क्ष	格果	版則 (Zi)	最終 (Zi)	∆Z=Z ₂ Z ₄	开始	红瓶	,8190 (Sc)	服务 (8d		811
2024.02.03 09:40	2024.02.03 18:16	0	0	0	2024.02.03 10:21	2024.02.03 19:03	46,308	47,692	1,454	-
等点维移绝对误差最大值(mg/m²)		.0	量程课移绝对保范最大值(mg/m ⁵)		1,484					
	学点维称 (%)			0		旅行市市 :	%)		0.65	-

表 5.6 气态污染物 (一氧化碳) CEMS 零点和量程源移检测

排试人员: <u>王 伦、陈少</u> 题	CEMS 生产厂真。聚光科技(政州)股份有限公司
河试泡点,上杭红新维源科技有限公司	CEMS 25%FT-100
测试位置: 我护理查拉放口 24 (FO-303)73-2)	CEMS 测理:
能效率体效性减少维制效应型的现在分词。 (v) 2.5cm	TO BOND OF THE COURT OF THE BOND OF THE BO

		it	競班价 :	mg/m³>			11.10	1/647, Cm	gin ³)		
ntha		等点读数		零点漂移绝 对误差	最级指数 一一一		等点滚移的		量程谱移给 对误差		
开始	裕英	起始 (Z ₀)	版作 (Z)	/SZ# Z=Z# 31 Min (A.D/		96.90	起始 (So)	能格 (S)	△S= 5-S ₀	香油	
2023.02.03 09:40	2923.02.03 18:16	0	0	0	2024,02.03 09:50	2024.02.03 18:37	183,025	181,108	-1.917	L	
等点源移绝对误差最大值(ng/m³)			0	鬼程塔	是程器移拍对说差最大值(mg/m²)						
	等点课程(%)		0		量程準修(%) 心			-0.96		

陈龄页共20月

	S DEED						19.7	IN STREET	C-20240161	
-		22.00		and the same	2.					
496	成大员 主		73	築物(氯化				Topsenii	6 M 6 M	
	成功点: 上枝:	100	100	(4)-m)		生产厂商; 鉴 型号+		30.2,34.0	CHRES	
	KON KON					原理: 後立		9.0012		
	生气体浓度或样			1,274 25.2		A STATE OF THE STATE OF		-1100	ne'm)	
		T.O.	原单位 (-				单位 (m)		
,	114	零点	设施	客点原移给 对说故	T.	190	RE	次数	量程零卷绝 对误差	
开始	松果	起始 (Z ₀)	最终 (Zi)	∆Z=ZeZe	开始	批束	起始 (84)	服的 (Si)	$\triangle s = s_i \cdot s_k$	备注
024 02.03 09:40	2024.02.03 18:16	n	0	0	2024.02.03 10:14	2024.02.03 18:55	117,217	117.267	0.050	-
李点郡(多绝对误差最为	大樹 (mg	ym²>	0	集程度	移结对调览员	大価(mg	m')	0.050	
	等点读程(%)		0	単格連載 (S)				0.04	
511	式人员。 <u>王二七</u> 式独动, <u>上机</u> 套	8、除少) (新能源	D H技有限		CEMS !	生产厂商、 <u>股</u> 以号:	<u> </u>	(H) \$949 0	有限公司	
167	生气体浓度或为			-	5 15 M	か名称:含	製器 1	-	100	
D	ė 90	117	能単位(B	in .	计量	単位 (m)	7000	
		幸华	读数	写点演修绝 对误差			常程	建权	量程课移绝 对误差	
	85 Nr.	超维	最终	△Z=Z-Z ₀	开始	結束	(So)	最終 (Si)	△8= 8,-S ₀	各注
开始	50,85	(Z ₀)	(Z _i)	10000000	BNA		7.90	VI-815	A FILL PLANE	
开始 0924.02.03 09:15	2024.02.03 19:22	(Z ₀)	0.05	Ü	2024.02.03 09:24	2024.02.03 19:28	20.849	20.897	0.048	-

W 15 W B 17 W

集型港谷(%)

李正原体 (%)

		1					(许丽号: XA-70-20)	240161
	表	5.0 气态汽) 染物(二氧化	(硫) CEMS i	示值误差和	(系统响应)	时间检测	
		也. 排少世					抗州) 謝台石等	्र इच्छ
	86000.5: _b	抗红粉医脓科	员有限会司			FT-10	Sharmanya re	100000
	michin w	か新密担成日	2# (FO-30317)			立叶变换红	Mostinger	
	污染物名称。				Mile main		Zionalia.	
		- 100	. И_ 02 ⊟		erica deserta			
Jone 1	标准气体器	CEMS E.F.		THE REAL PROPERTY.		系统响	受性例 (s)	
中马	30L	CEMS ALV	CEMS 原示 值得平均值	示值误差 (%)		测定值		on in-
	* 100	""	30.10. 2.55.00	2.795	71	T2	T=T1+T2	平均
1		170,817			.37	41	- 81	
2	172.3	170,308	170.686	-0.81	36	43	79	80
3		170.933			28	52	80	
4	1111-1111	115.475			34	45	79	
5	113.7	114,808	115.042	0.67	38	41	78	80
6	1000000	114.842	See Considering	11011	41	42	83	
7		57.467			31	50	82	

表 5.10 气态河旋物 (一氧化氰) CEMS 示值误差和系统响应时间检测

SCHOOL STREET, MANUAL PORT, SCHOOL STREET, SCHOOL S	STATE OF STATE OF STATE OF THE PARTY OF THE
测试人员: 王 松、除少良	CEMS 生产厂商。 <u>张光祥往(杭州)股份有限公司</u>
梅试效点:上抗红新饱源科技有限公司	CEMS 転号: FT-100
判试位置。现价指向持放口 28(PO-303173-2)	CEMS 原理。 佛立叶变换红外光谱法
污染物名称,一氧化氯	计量单位: me/m³

组成时间: __2024 年 02 月 02 日

	标准气体参	CEMS	CEMS 温泉	示值误单		系统响	型計門 (a)	
中写	考值	显示值	值得平均值	(%)		平均值		
	79 Hz	0.000	THEFT TAGES	1367	33	72	T=T1+T2	1.8910
1	A SHOWN IN	200,808			29	46	81	
2	200.9	200.833	200.633	-0.12	30	48	79	80
3		200,458			28	49	50	
4		125.683			31	45	79	
5	125	126.033	125.675	0.29	29	48	78	80
6		123,308			27	41	83	
7		61.758			32	43	81	
8	60.1	61.808	61.786	0.73	30	47	80	78
9		61.792	The state of the		27	52	74	10

第 12 庆共 27 五

	农 :	1.11 气态	污染物 (二氧)	老氨) CEMS	示值误差和	1系统响应	时间检测			
	测试人员: 王	林. 陈少斯		CEMS	生产厂商。	銀元料金 (6/40 R0 00	100		
	選出(法力) 上	机红油油油料	技有观众可	CEMS 集号: FT-100						
							SIDE-ID.			
			2a (FO-30317)	CEM	S (W.XE): _16	A11-5-868	外光能法	_		
	行與特名称)。	- 包化泵		一 计量点	eta meser					
	BUCHTL _2	024 # 02	17 02 H							
	annuarities.	ever se	compres (II-a)	A 10.10 M		系统相	应时间 (a)			
9	将推气体参	日本第	100 to 10	(%)		测定值		ver 3 ds 40		
	-9.36	ocasa.	THESE LYSTE	5797	TI	T2	T-T1+T2	平均值		
1_		45.65			43	73	114			
2	47.23	47.525	46.300	-0.40	39	68	107	110		
3		45.725			40	70	110			
		29.858			42.	70	112			
	29:37	29.458	30.214	0.37	40	61	304	189		
•	11157.11	31,325	34000		36	72	110			
	5 No. 1	13/083		(40)	42	65	107			
_		12.275	13.328	0.89	43	71	114	109		
	11.29	toward.	10000	/0.00920 PE						

	标准气体和	CEMS	CEMS 基示	示值误差		系统内	应时间 (s)	
序号	考哲	是新值	伯得平均值	(%) -			平均值	
yann.	.3.00		CN	TI	12	T=T1+T2		
1		182.97	A AMERICAN		19	51	70	
2	181	183.925	183.462	1.23	16	48	64	66
3		183.492			17	45	63	
4		109.483			18	50	68	
5	110	108,292	108,926	-0.53	16:	49	65	-66
6		109.033			17	47.	64	
7		53.95			20	53	73	
8	50.4	54.383	54,25	1.93	18	48	66	68
9		54.417			19	46	65	

10 13 % A 27 ft

	A DEE		2837.03	DESCRIPTION OF THE	To start		· [古編号: XA-TC-23	240161
	测试人类: 王	E. 第2世	行集物〈氯化 技有因公司	CEMS	4.7°7 Ri		机州) 股股份第	ian.
	MERK <u>K</u>	的想要排放口 以化包	2f (FO-303)73	(-2) CEM		3.叶亚扬红	363557	
	毛維气体療	CEMS	error n =	77.04 (19.46)		系统响	应时间 (s)	
20	予値	307.33.5.5.5	CEMS 景示 值得平均值	示值误整 (%)		新定位		w.a.
	考值 显示值	18.00 18.	tatop toopa	7.007	TI	T2	T-T1+T2	3534
					30	49	79.	
1		115.292	100000000000000000000000000000000000000	200.00				29
1 2	115.7	115.292 116.267	115.795	0.08	28	48	76	79
1	115.7		115.795	0.08	28 32	48 51	76 83	29
1 2 3 4	115.7	116.267	115.795	0.08		7.0	-	79
1 2 3	70.7	116.267 115.825	72.489	0.08	3.2	51	63	76

表 5.14 气态污染物(含氧量) CEMS 示值误差和系统响应时间检测

0.81

26 33 26 48 47 53

30 79

而试人员: 王 松, 第少點	CEMS 生i ²² / 例:	聚光科技(核州)股份有权公司
测试地点: 上杭红都能级科技有限公司	CEMS 전투:	HMS-200
测试位置。 <u>拥护细囱排放口 2f (PQ-303173-2)</u>	CEMS RIBE-	氧化物法
污染物名称: 含氰蛋	计规单位:	N

测式时间: 2024 年 62 月 02 日

71.925 27.775 28.8

28.533

28,369

	标准气体参	CEMS MAR	CEMS 高液	示机灵垒		系统响	別时间 (a)	
序级	市直	(#	有符乎均值	(%)		制定值		
	-5 the	- 144	atte a south	100	71	12	T=T1+T2	平均強
1		20.9			6	23	29	
2	20.91	20.897	20.899	-0.05	5	-21	26	28
3		20,9			6	22	28	
4		13.309	13.356	-1.07	7	24	31	30
5	13.5	12.356			5	22	27	
6		13,403			5	26	2)	
3	10000	5,883			8	24	32	
8	6.01	5.836	5.847	-2.71	6	26	32	34
9	1774100	5.823	1000		6.	33	39	

N 14 K St 27 St

-			
- 40.	C01	m	2115
A	221	sa.	500

张启频·\$5 KA-7C-20240161

表 5.15 参比方法评估气体污染物 CEMS (二氧化硫) 准确度

污染物名称: 二氢化硫 计量单位。mg/m²

13360010101	100000000000000000000000000000000000000		- 1	85 do 10 - 101	VIII.			
测式日期	月号	时间(时、分)	多比为拉	別是51A	CEMS 初星(I B	6据对五一0。	
2924.02.03	1	10:48-10:53	ND		7.749		5.249	
	2	10:56-11:01	ND		21.991		20.491	
	3	11:12-11:17	21		11.700		-9.300	
	4	11:34-11:39	5		2.004		-2.996	
	5	11:41-11:46	34		1,897		-2.103	
	6	11:57-12:02	ND		1,660		0,160	
	7	12:12-12:17	4		6,535		2.533	
	8	12:46-12:51	ND		1.938		0.438	
	9	13:25-13:30	ND .		1.879		0.379	
	平均值		5		6.372		1.372	
	数据对差的平均值的绝对值		1.372					
	数据对意的标准偏差		8:20%					
	宣信系数		6.30					
	相对准确度		174.86%					
	蛇对进程		1.4					
	程对误差		16.03%					
标准气体	88		保证值	参比方法测量值 有		相対	[対災差(%)	
				医样的	果样后	采杯剪	采作后	
	二氧化酶		27.14	56.3	58.1	-1.5	1.7	
			113.71	111.4	114.9	-2.0	1.0	
			172	170.6	176.4	-0.8	2.6	

N 25 N 31 27 N

A FIRM

2000 2000 4788

排內備等-84-70-20040163

表 5,16 参比方法评估气体污染物 CEMS(氯氧化物)准确度

選試人员。主 也、茶少鞋
 超某地点。上核红茶便能各枝有股公司
 25MS 受号。 PT-100
 超減位量。提供認該性效日 (PO-303173-2)
 25MS 原母。 博文叶安徽红外水造法
 参比方法仪器生产厂集。直然帐止应用技术研究所、受号。如12H-D 集型。企业企业解法

号版物名称: <u>据氧化物</u> 计量单位。mg/m^{*}

污染物名彩。	医氧化物			量単位。202	/m¹				
那此出那	序号	財別(財,分)	多批方法	测量性入	CEMS 测量	8.8	数据对差=B.		
	1	10:48-10:53	7	0	92.394		22,394		
	2	10:56-11:01	8	3	112,236		29.236		
	3	11:12-11:17	8	6	113.932		27.932		
	4	11:34-11:39	13	26	153.705		27.705		
100	5	11:41-11:46	7	4	101.128		27.128		
	- 6	11:57-12:02	7	5	107,623		32.623		
	7	12:32~12:37	75		96.133		21,133		
2024/02/03	- 8	12:46-12:51	43		61,725		18,725		
200-5112.03	9	13:25-13:30	2	9	49,550		20.550		
	平均值		7	3	98,714		25.714		
	数据对差的千均值的用对值		25,714						
	数据	数据对着的标准偏差		4,70%					
- 3		置信系数	3,51						
		和对准确度	39.3%						
1		绝对运动	25.7						
		相对误差	14,7%						
		名称	and the	参比方	法商量值	相及	(後数 (%)		
		55 fp	保证值	采样面	采样后	采样(三 交科目		
#27.8KH			60.5	60.5	.62.1	1.2	3.3		
		一氧化氯	125	124.8	124.4	-0.2	-0.5		
			199.6	197.3	201.3	-1.2	0.9		

86 16 N → 27 N

5	(B	< 8	(3 R)	ā
- 4	A S	D(v)	N/K	
		-		_

6131619 (KA210-2024) (KE2

表 5.17 参比方法评估气体污染物 CEMS (一氧化碳) 准确度

表試人员,主 检、毫少整 CEMS 生产厂商,果沒有这《杭州》股於召集会司 商試地点,上就在董能服務技有限会司 CEMS 集号。 FT-160 網式程實,提記整點達款口 24(FQ-M3173-2) CEMS 编辑: #克叶曼我红外光谱法 每批方法依据生产厂商:查益亳山应用枝米研究局 智号:301211-D 即理,定电位电解法

123615-0321	-31005			- F1 (M)-9-	Er ngm			
测试证据	丹耳	时间(财,分)	参比方法	表现值A	CEMS 岩壁包	LB #	数据对称-8-7	
	1	10:48-10:53	N	D	2.551		1.051	
	2	10:56-11:01	N	D	0.871		-0.629	
	1	11:12-11:17	N	D	1,011		-0.419	
	4	11:34-11:39	N	D	0.974		-0.526	
	5	11:41-11:46	N	D	1.520		0.320	
	6	11:57-12:02	N	D	2.428		0.928	
	7	12:12-12:17	N	D	3.305		1.805	
2024.02.22	8	12:46-12:51	1 3		7.119		0.119	
21124312.22	9	13:25-13:30	N	D	3.294		1.794	
		平均值			2.605		0.605	
	数据对差的平均值的绝对值		0,605					
	30.15	对整的标准偏差	0.95%					
		旅信系数	0.73					
		但对准確度	58.0%					
		绝对误差	0.6					
		相对误处	10,5%					
		名称	WEW	多比力	法制量值	相对	周差 (%)	
		2019	14.16.30	采得首	采拌店	果件前	医排后	
标准气体			50.4	48.8	31.1	-3.2	1.4	
		一凯化赛	110	110,3	114,9	0.3	4.5	
			181.3	180.2	183.5	-0.6	1.2	

76 17 ft J; 27 J;

A 200	图 WC6	, pyste	V11 PU V. 1548	銀竹	8 € : XA-TC-2034015
	表 5	.18 参比方法评估	气体污染物 CEMS	(氧化氢) 准确度	
洲运入州:	E 8 8	8.04B	CEMS 生产厂	育: 星光科技(株)	(1) 社会有限公司
例试地点。	Letter	能維持技有股公司	CEMS 為(學)	FT-100	
muthm: 1	医卧放伤 员	<u>3</u> 012 2± (FQ-303173	-25 CEMS 原用:	情立叶变换红鲜为	in it
		1: 五弦			
内染物名称。	KEN		计报单性	E: mein!	
测试日期	序号	村何 (村、分)	参比方法测量值 A	CEMS 利州省 B	数据对差-8-A
	1	10;39-10:54	18.4	17,165	-1.235
3	2	10:55-11:10	41.3	39.169	-2.131
	1	11:10-11:25	43.1	39.786	+5.314
	4	11:26-11:41	28.7	28,550	-0.150
	5	11:42-11:57	13.4	12.079	-1.321
	6	11:57-12:13	16.7	15,846	-0.854
	7	12:13-12:28	22.7	20.982	-1,718
	8	12:29-12:44	13.3	12.077	-1.223
024.02.03	9	12:45-13:00	14.4	(3.723	-0.677

13,723

22.153

1.447

0.92%

0.71

3.95%

-1.5

+3.07%

-0.677

-7.417

無 18 页 共 27 页

23.6

平均值

数据对差的平均值的绝对值。

数据对终的标准领差

置信系数

相对准确度

绝对进程

相对识德

	11000		S.785.20			报告陈号	and the same of	212.55
	表 5	.19 参比方法评估	气体污染物	CEMS	(含氧量) 者	上确度		
淘汰人员。	E 12. 5	5少粒	CE	MS 生产厂	m REM	(新州)	H-93	CER
例见地点。	EREPRI	2000年19月1日	CE	MS 555	HM	8-200		
科式位置: 1	SERVINGS	HA III 28 (PO 303173	23	CEMS JUL		化特法		
象比方法仪	N生产17	5. 资态商业应用技术	现的所	5) G: 301	ZH-D	DH.	ukri	1
行與物名物				计量单位		New or		
测试出版	序号	时间(时,分)	参出方法	対解性人	CEMS 20 S	Н/ В	数据对	½-Β-
	1	10:48-10:53	3.	90	7.192		1.	292
	2	10:56-11:01	6.	6.60			0.	591
	3	11:12-11:17	7)	00	7,729		n.	729
	4	11:34-11:39	6.	50	7.582		0;	782
	5	11;41-11:46	8.9	8.00			0.	431
	6	11;57-12;02	8.30		8,522		0.3	222
	7	12:12-12:17	7.40		8.443		1.0	043
2024.02.03	8	12:46-12:51	8.60		8.804		9.7	204
20124302313	9	13:25-13:30	7.3	30	8,424		1.124	
		平均值	7	12	8.035		0.715	
	数据对	热约平均值的继对值	0.715					
	\$215	对是约标准偏差	0.39%					
		質信系数	0.30					
		相对准确度			13.8%			
		绝对误数			9.7			
		排对淡光			4.6%			
		28	保证性	参比方	法满量位	相対	京都 ((%)
			14:00.31	采件苷	系件后	業件直	0 9	克样豆
标准气体			5.01	6.1	6.3	1.5		4.8
		Art and	10000	16313	134540	00.00		5.0

第 15 頁 共 27 美

A cee

(F. B. W. V. NA. TC-2024015)

表 5.20 温度 CMS 准确度检测

测试人员; 王 - 松、陈少思	CEMS ⊈△□M₁ <u>#</u>	(土科技(杭州) 股份有限公司
夠试地点: 上杭红斯北海科技有能公司	CEMS \$1.0:	TPT-100
新试位置: <u>保护部区特殊11.14(FO-303113-1)</u>	CEMS TORK	2(100/电容、纳压法
参比方法仪器生产厂商。 <u>青岛被山城用技术研究研</u>	型号: 3012H-D	原理: 热电调法

EIRI	押号	9460	参比方法 A (℃)	CEMS (EB (%)	数据对差=B√ (°C)
	T	16:57~17:00	139.4	138,355	-1.045
20.50	2	17:00-17:03	138.4	138.291	-0.109
	3	17:04-17:07	138.9	138.513	-0,387
	4	17:08-17:11	138,6	138.644	0.044
2024.02.03	.5	17:12-17:15	138.5	138,842	0.342
	- 6	17:16-17:)9	139.1	139,098	-0.002
	7	17:20-17:23	138.6	139.333	0.733
	8	17:24-17:27	138,7	139,521	0.52)
	.9	17:28-17:31	139.7	139,671	-0.029
	\$5'00 HE NO	现券 (*C)		-9.04	

第 20 页 页 27 页

ASS, H	F 355 2H
	OVER HER

排音報号-XA-TC-20240161

表 5.21 程度 CMS 准确度检测

高状人员; 王 位, 张夕彭	CEMS 生产/"省: 3	北九阳技(京 /印)、股份有限公司
据试地点。上抗压断维波科技有限公司	CEMS 担号:	T2T-100
测试位置。据护用应护张口 2W (FQ-303)73-2)	CEMS RUE:	程度被限电震法
整件为外位图生为广阔, 要保护市自由技术并变易	MW. 1003007	THE PROPERTY.

EFRI	炸号	対同	参比方法 A (%)	CEMS 7E.B(%)	聚据对意=B-/
	1	16:57-17:00	20.16	20.354	0.194
	2	17:00-17:03	19.87	19.883	0.013
	3	17:04~27:07	20.45	20.817	0.367
	4	17:08-17:11	20.55	20,574	0.024
2024.02.03	5	17:12-17:15	20.59	20.506	0.216
2124.02.03	6	17:16-17:19	20.69	28.879	0,189
	7	17:20-17:23	20.72	29.662	-0.058
	8	17:24-17:27	20.42	20.915	0.495
	9	17:28-17:31	21.42	23.488	0.068
	温度相对	报款 (%)		-0.41	

96 21 St 14 27 St

P	与服把 ATWANG			est o			100		(E.S. S. C.	X4-TC-202	Nines
									thinks.	AA-10-aug	41701
				表 5	22 速点	使推确度	校测				
3610	人员:王	6. 第	200			CEMS 9	erra.	80世刊1	< 80,000	股份有限	217
2010	ndi L	ALC: N	MEHEAL	2公司		CEMS 3	10	TPI-	100		
Middle	0.W = 191	产類因形	W. [2 W L]	FQ-30317	3-27				以 电阻比		
多比	5法代数:	EACH.	388	山泉用森木	张班宏 新				京理、皮上		
		ρ.ψ								LBS	
FFB	方法						判定次数				日平均
日期	为独。	L	2	3	4	5	.6	7.	8	9	tit.
				12.07	10.00	12.44	1245	12.89	12.63	12.59	12.60
2024.02.03	参比 方法	12.33	12.38	12.51	12.38	12.77	Lano	10000		1000	1400

第 22 年 共 27 页

任行為为: XA-7C-20140101

五、调试检测结果汇总

10.31	湖田		技术要求	60.80 M.M.	長 符 行
×		印值误定	当表量程<100;mel/mol (256mg/m*) 时,示值误差不能过 #2.5%;相对于仪瓷瓷量程值);	-0.81%	2010
19	79	系统单连杆向	≤3009	804	#2 d
(A)	和	取点操作	不勘过=2.5%	0%	#8-S
E	E ME	単位対象	不超过=2.5%	0.47%	200
S		沿城里	科技保度<20µmol/mol(57mg/m³)时,给对误差不超过 ±6µmol/mol(17mg/m³)	1.4mg/m ⁴	特合
		示值误差	告海景程<200µmol/mol (410mg/m²) 时,示值误差不超过 +2.5%(相对于仅表清量程值);	0.89%	131
	18.	系统有应时间	<200s	110s	सर्
	致化	等点课移	不经过±2.5%	0%	初音
	-85	展投票等	*-M01+25%	0.65%	89 E
		在确定	20µmol/mal (41mg/m ³) 5排放浓度<50µmol/mal (103mg/m ³) 时,相对误差不超出±30%	14.7%	29 6
气体		宗智说是	当清重程<200pmpl/mol (250mg/m*) 村。示值证券不超过 ±2.5%(相对于仅表演重程值)。	1.93%	初点
阿施	-	系线帐应时间	≤200s	68s	持会
8	氧化	华点微珠	不超过=2.5%	0%	物点
E	酰	重任用移	不相过=2.5%	-0.96%	70.0
M S		SE MOTO	排政体度<20µmcl/mol(25mg/m³)转,逐对误差不超过 =5µmcl/mol(8mg/m³)	0.6mg/m ³	10.0
		示值识差	当篇量程<200μmol/mel(326mg/m³)时,示值庆至不超过 +2.5%(相对于仅表演量程值)。	1.49%	秤台
	9.	系统响应时间	≤400s	79a	N/8
	化	率点源移	不進过±2.5%	0%	石台
	프	原程譜器	不經过+2.5%	0.04%	有合
		游鸡度	群放浓度<500µmol/mol (82mg/m ³) 时,维对误差不超过 ±15µmol/mol (34mg/m ³)	-1.5mg/m ¹	me

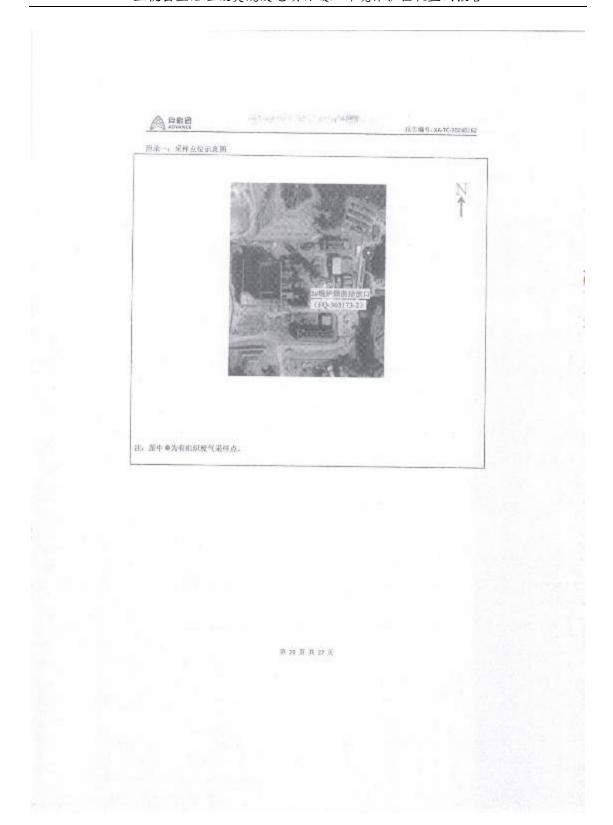
第 21 月 共 27 月

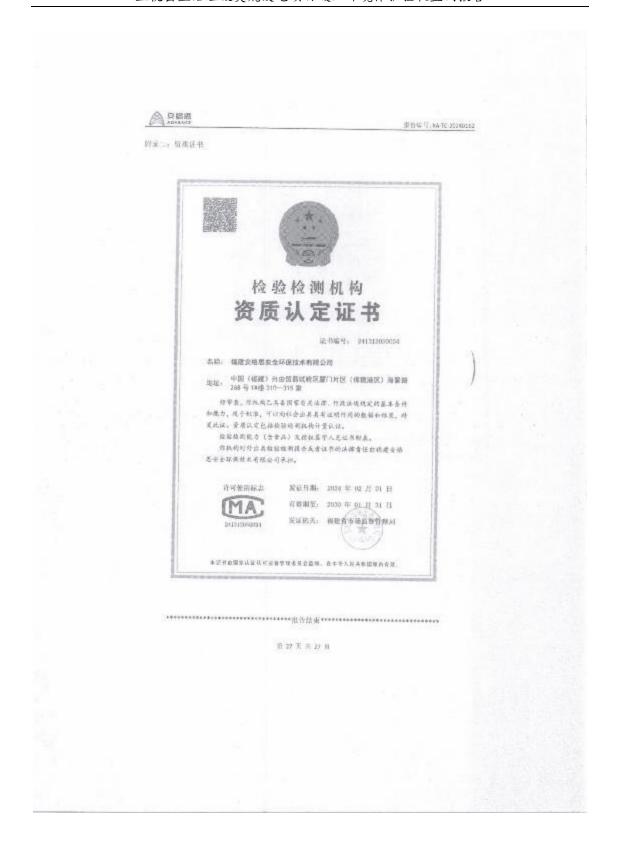
12 % 05 % XA-TC-2024D161

续表五、调试检测结果汇总

98	項目		技术要求	10.29 26.90	規谓 符合		
		示情失於	不超过±5%(相对下标准气体标称值)	-271%	符合		
31.70		系统附允时间	≤200ø	34s	行位		
C M Ot	非然此事	不過減±2.5%	0%	符合			
s		最松湖林	不超过+2.5%	0.10%	符合		
		准确度	>5.0%。相对准确度<19%	13.8%	祥合		
取92 物	19	李点赛每	不超过12.0%	0%	符合		
C E	14.	100	45.	量程感体	不提过±2.0%	0%	行合
M S	110	推编规	排放旅度≤10mg/m³,推对误差不超过≥5mg/m³	-0.1mg/m ²	符合		
性祖 C M S	超	初晚度	或逐>10m/s。相对误差不超过±10%	-0.90%	符合		
和度 C M S	想度	绝对说程	不超长30℃	-0.0PC	符合		
間改 C M S	极度	湘茱萸	帮气提度>5.6%。相对进至不超过±25%	-0,8156	符合		

第24 五共27 员




显片研号: XA-10-20240181

五、结论

经 2024 年 02 月 02 月 01 日化对拉赛, 安基年上秋江路悠神料江有灌公利魏却知由华在口 28 (FQ-303173-2) 潮气付应连接检查系统(CEMS) 颗粒物检测年元。二氧化硫检测单元。氧氧化物检测 单元、氯化氮检测单元。一氧化碳检测单元。温度检测单元、塑度检测单元和高速检测单元等性能检验 结符合 4 间定污染滤滤剂(SO₃、NO₈、聚验物) 核放连续溶液技术规范) (3D 75-20171 中表 A) 未表 2 要求。《天上如面生活红级发建发电厂自动监控和监控执法工作的通知》(环办执法[2019]64 号特任 2-2019.12.26) 中表 1 相应莫求。

第四页式20页

附件 11CMES 设备检测报告

环境保护部

HATTER Y X TALE TO A STREET

环境监测仪器质量监督检验中心

检测报告

质(认)字 No. 2022-195

 产品名称:
 CEMS-2000 B FT 型烟气 (SO₂, NO_X、HCI、CO) 排放连续脆测系统

 委托单位:
 聚光科技 (杭州) 股份有限公司

 檢測类别:
 认证 檢 测。

 报告日期:
 2022 年 6 月 28 日

编制说明

- 本报告无检测单位"测试专用章"、"EDS章"及转缝未加盖"测试专用章"无效。
- 2. 本报告涂改无效, 无审核、签发人签字无效。
- 3. 本报告仅对被检禅品负责。
- 4. 本报告复印件无效。
- 5. 本报告未经许可不得作为广告宣传。
- 6. 本报告有效期截止至 2027年 6月 27日。
- 7. 对本报告如有异议,应于收到报告之日起十五日内向检测单位提
- 出,逾期不予受理。

联系方式:

单 位: 中国环境监测总站 (环境保护部环境监测仪器质量监督检验中心)

地 址: 北京市朝阳区安外大羊坊 8 号院(乙)

电 话; (010) 84943047

传 真』(010) 84949037

邮政编码: 100012

Marking as ~

环境保护部环境监侧仪器质量监督检验中心 检测报告

产品名称	類气 (SO ₁ , NO ₅ , HCl, CO) 排放连续数据系统	产品担号	CEMS-2000 B FT
委托单位	源光科技 (· (州) 股份有限公	90
生产单位	第 允科技(杭州)版份有限公司	种品效量	3
华品出厂编号	① 376P2050013 ②	376P2050005 (§	376P2050008
生产日期	2020年5月	送检日期	2021年1月
实验室检测项目	二氧化糖盐剩单元。 依要响应时间, 一周零点和量程源移、环境温度变气 变化的影响、干扰成分的影响、平 一氧化靠套测单元。 仅要响应时间、 一周零点和量程源移、环境温度变气 变化的影响、干扰成分的影响、平 7。二氧化氮粒剩单元。 仅要响应时间、 一周零点和量程源移、环境温度变行 变化的影响、干扰成分的影响、平 有气温影单元。 仅表响应时间、 等点和量程源移、环境温度变行 等力量程源移、环境温度变行 等力量和量程源移、环境温度变行 等力量和量程源移、环境温度变行的影响、平行性、	と的影响、进样强 7性; 重复性、线性浸 と的影响、进样调 7性; 重复性、线性浸滤 可数响。 选择源 7性; 化、线性误差、 2 2 3 6 6 6 7 6 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	量变化的影响、供电电日 数、246等点和量程源移、 量变化的影响、供电电日 数、245等点和量程源移、 量变化的影响、供电电日 46等点和量程源移、一周 46等点和量程源移、一周
現场检测项目	二氧化氧 CBMS: 24h 零点和量程票 原氧化物 CBMS: 24h 零点和量程票 氧化氢 CBMS: 24h 零点和量程票 氧化氢 CBMS: 24h 零点和量程票 氧气 CMS: 24h 零点和量程票 氧气 CMS: 24h 零点和量程票 氧气 CMS: 24h 零点和量程票 或连连续数票系统: 建度还高效相形 级度连续数衡系统: 推确定。 级度连续数衡系统: 推确定。	學、示值误差、月 學、示值误差、月 「一、示值误差、系 「學、示值误差、」 「 「不值误差、」 「不值误差、」 「不值误差、」 「不值误差、」	《統明应时间、准确度。 统响应时间、准确度。 系统响应时间、准确度。
检测日期	Control Statement Control Stat	月~2022年5月	
检测依据	 (型定污热碳器气(SO)、NOx、 施方法)(HJ 76-2017) (生活垃圾焚烧固定要调气(販 商系统技术要求及检酬方法(作 	粒物、SO ₂ 、NO _X	HCI、CO) 排放连续监
检测结论		合 格	CONCESSION OF THE PARTY OF THE
备 註	 本系统连续监测烟气中二氧化硫 氧气、烟气润退、漏气温度及发 烟气润量采用直接抽取场缘方式, 和一氧化碳测量采用待息叶虹外 采用 8 製度拆管法, 温度测量采 	的《湿度》 ,二氧化硫、一氧 吸收法。氧气测量	化赁、二氧化医、氨化氢 采用氧化铀(1) 法选为量

报告编制人:【艺】

审核人: 签发人: 至发人: 至发人: 至发日期: Zozz年 6月

第2页共9页

表 1 检测结果

	10.15	A more or	拉施納		推测结果		施項
	30.42 至	检测项目	标要求	376P2030013	37672030005	376P2030008	评定
		仪表明应时间	≤120 s	86 s	81 s	79 s	会相
		重复性	≤2%	0.2%	0.4% F.S.	0.2% F.S.	合格
		组性误差	±2% P.S.	-0.7% P.S.	-1.1%F.S.	0.8% F.S.	合格
		245 學点療律	±2% F.S.	1.9% F.S.	-0.956 F.S.	-0.9% F.S.	会校
		245. 推荐滞移	±2% F.S.	-1.8% F.S.	-1.2% P.S.	-0.7% F.S.	合格
	二氧化烷	一周等点源移	±3% F.S.	-1.6% F.S.	-0.6% F.S.	-1.0% F.S.	合格
	拉侧单元	一周最程振移	±3% F.S.	0.6% F.S.	1,1% F.S.	0.6% F.S.	合和
		环境温度变化的影响	±5% F.S.	-1.5% F.S.	1.1% F.S.	1.8% F.S.	合书
Ŋ	1	进将流量变化的影响	±2% F.S.	0.4% F.S.	0.2% F.S.	0.4% F.S.	会书
1	1	供电电压变化的影响	±2% F.S.	<0.1% F.S.	0.2% F.S.	0.5% F.S.	合书
		干扰成分的影响	±5% F.S.	1.0% F.S.	-1.8% F.S.	-3.1% F.S.	合书
		平行性	€5%		1.6%		合格
Ñ		仪泉响应时间	≤120 s	85 s	89 s	81.5	会书
,		重复性	<2%	0.4% F.S.	0.6% F.S.	0.7% F.S.	台书
		线性误能	±2% F.S.	-1.0% F.S.	0.9% F.S.	1.0 F.S.	合作
		24h 琴点领容	±2% F.S.	0.9% F.S.	-1.0% F.S.	-0.8% F.S.	台灣
H		24h. 量程調移	±2% F.S.	-0.8% F.S.	-0.5% F.S.	0.7% F.S.	会市
	一気化気	一周学点课移	±3% F.S.	-0.6% P.S.	-0.8% F.S.	-0.6% F.S.	合书
3	监视单元	一周盘程源移	±3% F.S.	1.4% F.S.	-1.856 F.S.	1.6% F.S.	合并
		环境温度变化的影响	±5% F.S.	0.9% F.S.	-2.2% F.S.	-1.5% F.S.	合料
		法控訴量变化的影响	±2% F.S.	0.2% F.S.	-0.3% F.S.	-0.2% F.S.	会书
		供电电压变化的影响	±2% F.S.	0.2% F.S.	-0.3% F.S.	0.2% F.S.	*
		干扰成分的影响	±5% 7.S.	0.8% F.S.	0.6% F.S.	0.5% F.S.	会书
	l'autri	平行性	≪5%		1.7%	-	会专
		仪表响应时间	≤120 s	85 s	81 s	78.8	合作
		重要性	≤2%	0.3% F.S.	0.4% F.S.	0.4% P.S.	合具
	1	親性研範	±2% F.S.	-1.0% F.S.	0.3% F.S.	0.9% F.S.	合书
	二氧化氯	24h 零点需移	±2% F.S.	0,4% F.S.	0.7% F.S.	0.6% F.S.	合具
	條例单元	24h 量程課移	±2% F.S.	1.1% F.S.	-0.8% F.S.	1.0% F.S.	合作
		一展零点源移	±3% F.S.	0,5% F.S.	-0.6% F.S.	-0,4% F.S.	台书
		一成無程領移	±3% F.S.	-1.2% F.S.	0.7% F.S.	1.3% F.S.	合档

第1页共9页

埃表

	4-11-1			性能指标		检测结果		单項
	SRX	检制项目	Ħ	复求	37622030013	376P2030005	376P2030008	评地
		环境温度变化的影响		±5% F.S.	-0.4% F.S.	1,495 F.S.	0.7% F.S.	台格
行 二氧化氮 验 直测单元		进程液量	变化的影响	±2% F.S.	0.4% P.S.	0.5% F.S.	0.6% F.S.	会格
		供电电压变化的影响		1:2% P.S.	0.5% P.S.	< 0.1% F.S.	-0.2% P.S.	合格
	EE (60 44-74	干扰权	分的影响	±5% F.S.	1,256 F.S.	0.6% F.S.	0.6% F.S.	合格
		平	行性	≤5%		2.0%		合格
	仅表:	的放射何	≤120 s	48 s	43.3	40 s	合格	
		m	复性	≤2%	1.1% P.S.	<0.1% F.S.	0.294 F.S.	会报
		58.5	生误差	± 2% F.S.	-0.3% F.S.	0.3% F.S.	0.3% F.S.	合格
int		24h %	李贞德 称	±2% F.S.	0.1% F.S.	<0.1% F.S.	<0.1% F.S.	合格
畑		246 前	福港	±2% F.S.	-0.3% F.S.	0.3% F.S.	0.4% F.S.	合核
*	製气 蓝园单元	-183	F点源移	±3% F.S.	<0.1% F.S.	<0.1% F.S.	-0.2% F.S.	合核
参数		一周	北松原移	±3% F.S.	-1.4% F.S.	-0.8% F.S.	-0.3% F.S.	合品
		环境温度	变化的影响	±5% F.S.	-0.2% F.S.	-0.6% F.S.	<0.1% F.S.	合格
		进样液量	变化的影响	±2% F.S.	0.1% F.S.	<0.1% F.S.	0.1% F.S.	台村
		供电电路	供电电压变化的影响		<0.1% F.S.	<0.1% F.S.	<0.1% F.S.	合材
		干扰成	分的影响	±5% F.S.	<0.5% F.S.	<0.5% F.S.	<0.5% F.S.	合有
		平行性		≤5%		0.6%		合格
	現均	多检测项	Ħ		性能留标要求	-	食器结果 76P2030005	单月 评为
		示值误差		M2	±5%(标称值)		0.5%	合格
			系统响应	1100	≤200 s		102 s	会员
		斯同			±2.5% F.S.	±2.5% F.S.		合格
污	=#.		245 重視8	KB	±2.5% P.S.		0.8% F.S.	合权
典	化病 CEMS		准确总	- 16	<57 mg/m ² 时, 对误差≤17 mg/	1023	2.9 cig/m ⁵	合材
53	-	-	245 年点8	NSF P	±2.5% F.S.	7 1 6	1.1% F.S.	合格
	1	复检	245 量积8	885	±2.5% F.S.	1 1	-0.4% F.S.	会物
		期间	mas		<57 mg/m³附, 对误签<17 mg/	m ²	2,3 mg/m³	合料

					**		
		現场を	200 171	9	性犯指标要求	检测结果 376P2030005	单項 評定
				彩值误位	±2.5% F.S.	0.4%	会格
		1	-11	系统响应时间	≤200 s	107 s	会格
			化凯		±2.5% F.S.	-0.8% F.S.	合格
				24h 散程網移	±2.5% F.S.	-0.3% F.S.	会格
		初粒		示值误差	±2.5% F.S.	-0.6% F.S.	会格
		\$BIG	二年	系统响应时间	≤200 s	100 s	合格
	20,50		化氮	24b 零点原移	±2.5% F.S.	1.2% F.S.	숨쓤
	化物 CEMS			24h 無程從參	±25% F.S.	1.1% F.S.	会格
	CENS		凱凱 化物	准确度	≥103 mg/m³ -<513 mg/m² bf, 绝对误继≤41 mg/m³	4.4 mg/m ⁵	合格
19			一年	241 写点赛莎	±2.5% F.S.	0.2% F.S.	合格
			化氮	24h 量程源參	±2.5% F.S.	0.2% F.S.	合格
跡		复粒	二年	24h 零点源移	±2.5% F.S.	0,6% F.S.	合格
		耕岡	化氮	24h 量根源移	±2.5% F.S.	0.2% P.S.	合格
物		1	包 包 化物	市路技	≥103 mg/m³ ~<513 mg/m³ 附, 絕對後整≪41 mg/m³	8.7 mg/m ³	合格
				示值误差	±5% (标称值)	-0.9%	合格
				系统响应时间	≤400 s	180 s	合格
			粒间	24h 学点图容	±2.5% F.S.	1.1% F.S.	合格
		,Ari	N.	24h 量程蒸移	±2.5% F.S.	0.8% F.S.	合格
	叙化包 CEMS			市森茂	<82 mg/m³ 村。 绝对误策≤24 mg/m³	6.0 mg/m ³	合格
				245.零点漂移	±2.5% F.S.	-0.3% F.S.	合格
		変		24h 量程領移	±25% P.S.	-0.1% F.S.	合格
		耕	M	海南度	<82 mg/m ² 3† .	0.7 mg/m ³	순원
-			10	1000000	#BX(10:50 % 24 mg/m²		
			3,00	福樂 安	绝对误验≤24 mg/m³	0.7 mg/m²	26

第5页共9页

续求

發音 聚值误差 系统响放时间 240 零点演移 240 新型课移 连确度 240 零点调移 240 最短调移 生确度	性能指标要求 ±2.5% FS. ≤200 s ±2.5% FS. ±2.5% FS. <25 mg/m ² 时。 絕对張差≤8 mg/m ² ±2.5% FS. <25 mg/m ² 时。	376P2030005 0.1% F.S. 101 s 0.5% F.S. -1.2% F.S. 4.7 mg/m ² 0.5% F.S.	评定 合格 合格 合格 合格
系统响应时间 24%等点網絡 24%基程網絡 24%基程網絡 准确度 24%等点網絡 24%最短網絡	≤200 s ±2.5% F.S. ±2.5% F.S. <25 mg/m³ ff. 超对误差<8 mg/m² ±2.5% F.S. ±2.5% F.S.	101 s 0,5% F.S. -1.2% F.S. 4.7 mg/m ²	合格 合格 合格
24h 零点網移 24h 無程課移 准确度 24h 零点網移 24h 最振網移	±2.5% FS. ±2.5% FS. <25 mg/m ² 时, 经对误差<8 mg/m ³ ±2.5% FS. ±2.5% FS.	0,5% F.S. -1.2% F.S. 4.7 mg/m ²	合格 合格 合格
24h 量程課移 连确度 24h 等点调移 24h 量程課移	±2.5% P.S. <25 mg/m² 时。 经对误差<8 mg/m² ±2.5% P.S. ±2.5% F.S.	-1.2% F.S. 4.7 mg/m ²	合格
连确度 245 零点调移 245 量短调移	<25 mg/m ³ 时。 绝对误差<8 mg/m ³ ±2.5% FS. ±2.5% FS.	4.7 mg/m ²	会校
24h 零点调移 24h 最短调移	担对误差≤8 mg/m ³ ±2.5% P.S. ±2.5% F.S.		
24h 量和源移	±2.5% F.S.	0.5% F.S.	
-	90.410.13.7307		合有
准确定	≤ 25 me/m) 84.	0.2% F.S.	合格
	绝对误差≤3 mg/m³	<0.1 mg/m³	合格
示值误差	±5% (标称值)	+1.2% F.S.	合格
系统响应时间	≤200 s	81 s	合於
24h 零点源移	±2.5% F.S.	0.1% F.S.	合有
24h 景祖崇移	±2.5% F.S.	-0.1% F.S.	合於
准确度	相对准确度< 15%	8,7%	合书
24h 零点漂移	±2.5% F.S.	-0.3% F.S.	会员
24h 量程等移	±2.5% F.S.	<0.1% F.S.	合明
推築度	相对准确度率15%	6.2%	合料
遊疫场系数 精密度	≪5%	0.7%	会有
准約度	>10 m/s 时。 相对误差±10%	-0.4%	会员
准确度	±3 °C	2 90	合料
法确定	±3 ℃	₹ 1.0>	会核
准确度	>5.0%时。 相对误差±25%	-2.1%	合料
冷焰度	>5.0%时, 相对调励±25%	0.7%	合料
	24h 重担票移 推成度 24h 至点票移 24h 重程哪移 连接度 连度场系数 精密度 准确度 准确度 准确度 准确度	24h 重担順移	246 整領原移 ±2.5% FS0.1% FS. 推確度 相対推确度 ≤15% 8.7% 24h 等点原移 ±2.5% FS0.3% FS. 24h 登積等移 ±2.5% FS. <0.1% FS. 24h 登積等移 ±2.5% FS. <0.1% FS. 推確度 相対推确度 ≤15% 6.2% 通度场系数 ≤5% 0.7% 持密度 >10 m/s 时,

Er ES 表示插像程。 氯氧化物以 NOs 针。

双多列共9页

表 2 检测样机配置表

部件	- 私称	规格型号	测量程度	生产单位	部件能等	景和
气态 污染物 CEMS (含 O ₂	采纳探头	PP-3000		表光科技(杭州)	430P2040024	
	件格馆线	FHT-D38	电加速	股份有限公司	810P2030013	9
	二氧化碳 消量收	FT-100	似证叶红外 吸收法	意大利 Sysmedia S.r.I		实验室: (0~100) mg/m 現场: (0~100) mg/m
	一氧化氮 测量仪		個里叶紅外 吸收法		330P2050003 330P2050007 330P2050001	实验室: (0-100) mg/m 現场: (0-200) mg/m
	二氧化氮 测量仪		每里叶红外 吸收法			实验室: (0-100) mg/m 現场: (0-100) mg/m
和湿度)	類化氢 测量仪		博恩叶红外 吸收法			现场: (0~100) mg/m
	一氧化碳 網量仪	ZrO-100	傅里叶红外 吸收法		301P2050007 301P2050002 301P2050009 301P2050005	现场: (0-100) mg/m
	排度 測量仪		红外吸收法			現場: (0-40) %
	和气 测量仪		氧化锆法	發光科技(杭州) 股份有限公司		实验室。 (0~25) % 现场。 (0~25) %
畑气	流速 測量仪		5至 按托特法	深光科技(杭州)		(0~40) m/s
参数 CMS	SELECT SM SELECT	TPF-100	領电阻法	設份有限公司	420P2040011	(0-400) ℃

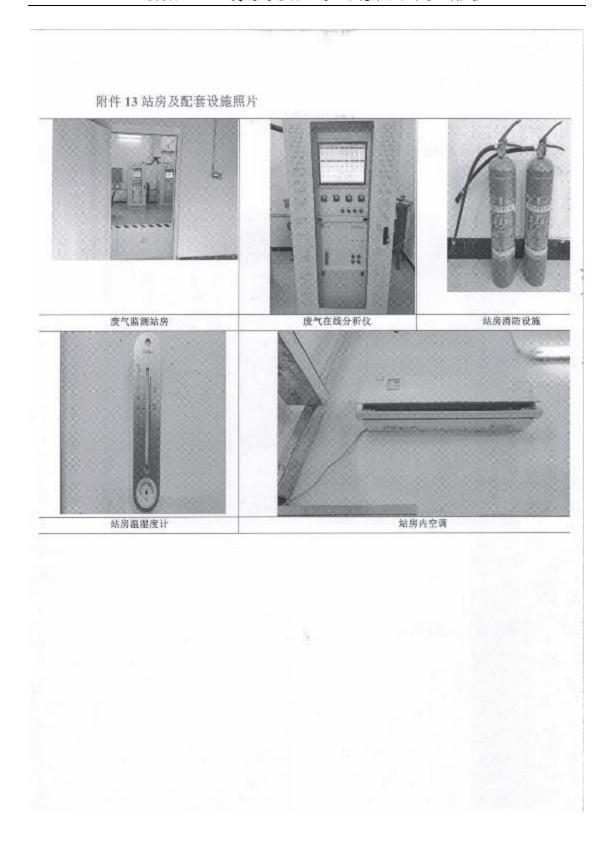
7 W # 9 W

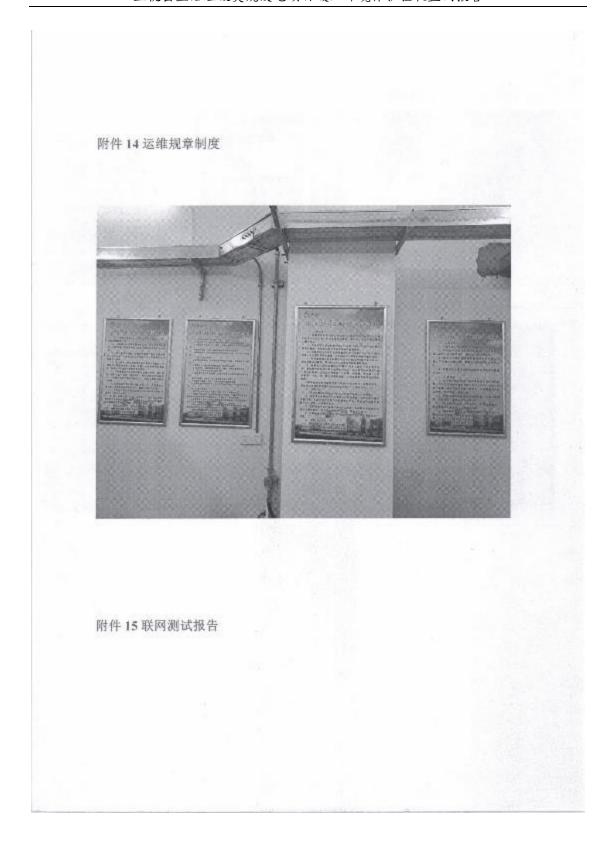
表 3 检测所用标准气体及现场情况

	标气名称	浓度水平	浓度值	生产厂商名称
	25,44	1	99.999%	Tarana and a second
		90% F.S.	90.0 mg/m ³	
		85% F.S.	85.0 mg/m ³	
1		80% F.S.	80.0 mg/m ³	
	in the styrete.	60% F.S.	60.0 mg/m ³	
	二氧化碳	50% F.S.	50.0 mg/m ³	
		40% F.S.	40.0 mg/m ³	
		25% F.S.	25.0 mg/m ³	
		20% F.S.	20.0 mg/m ²	
1		90% F.S.	90.0 mg/m ⁸	
		85% F.S.	85.0 mg/in ³	
		80% F.S.	80.0 mg/m ³	
	No. 11 - 200	60% F.S.	60.0 mg/m ³	
	一氧化鉄	50% F.S.	50.0 mg/m ³	
		40% F.S.	40.0 mg/m ³	3
- 1		25% F.S.	25.0 mg/m ³	
		20% F.S.	20,0 mg/m ²	
实验室检测所		90% F.S.	90.0 mg/m ³	校州新世纪是 气体有限公司
使用的标准气		85% F.S.	85.0 mg/m ³	
体		80% F.S.	80.0 mg/m ³	
	-800	60% F.S.	60.0 mg/m ³	
	二氧化氮	50% F.S.	50.0 mg/m ³	
6		40% F.S.	40.0 mg/m ³	
		25% F.S.	25.0 mg/m ³	
		20% F.S.	20.0 mg/m ³	
		85% F.S.	21.0%	Similar
		85% F.S.	20.8%	
		80% F.S.	20.0%	
	de se	60% P.S.	12.5%	
	70.0	50% F.S.	18.9%	
		40% F.S.	10.056	199
		25% F.S.	6.25%	
1		20% F.S.	5,00%	
	一氧化碳	J.	300 mg/m ³	
	二氧化碳	1	15.1%	
	甲烷	1	47.6 mg/m ³	L.
8	90年	1	20.1 mg/m ³	19
	氮化氮	1	198 mg/m ³	

ALKSA'

第8页共り页


塘森


		标准气体		生产厂商名称
	移气名珠	非度水平	源度值	
	20.88	/	99,999%	
		75	85.0 mg/m ¹	
	二氧化剂	曲	55.0 mg/m ³	
		15.	25.0 mg/m ³	
		76	170 mg/m ³	
	一氧化铼	4	110 mg/m ³	
		45.	55.0 mg/m³	
San version 1		夷	85.0 mg/m ³	
现场检测所使 用的标准气体	二氧化氯	中	55.0 mg/m ³	杭州新世纪混合
Letteranie 736		低	25.0 mg/m ³	气体有限公司
2	氨化氯	市	\$5.0 mg/m ³	
		+	55.0 mg/m ²	
1		挺	25.0 mg/m ³	
	一氧化碳	*	85.0 mg/m ³	
		+	55.0 mg/m ⁴	
		45.	25.0 mg/m ³	
		育	21.3%	
	祭气	坤	13.8%	
		任	6.25%	

附件 12 试运行报告

上杭红新能源科技有限公司

联

XX

测

试

一、概述

上杭红新能源科技有限公司焚烧炉 H (30173-1),H2 (30173-2) 排放口环保数采 仪设施于 2022 年 6 月 10 日完成安装,2024 年 1 月 15 日至 2024 年 1 月 21 日进行 调试。

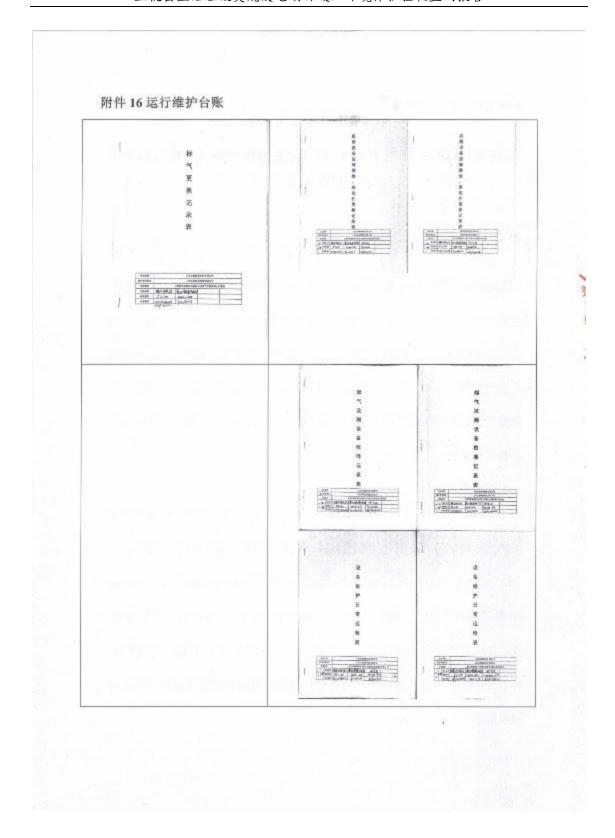
运行期间主要是对数据采集传输仪进行适应性检查、接口与显示设备检查、诊 断检查、独立性检查、管理安全检查、数据处理与检索检查、远程通信和校正检查 及现场故障模拟恢复试验,联网部分进行通信稳定性、数据传输安全性、通信协议 正确性、数据传输正确性、联网稳定性的检查。

调试与运行的检查结果表明,安装的数据采集传输仪及联网符合相关标准,符 合验收条件。

二、 数据采集传输仪调试情况

检查项目	检查标准	检查 结果
适应性检 查	只修改数据采集传输仪的系统设置和建立相应的测试模板,就可以适应新的烟气污染源在线监测仪器,修改其系统设置可以改变监测对象,采集通类型可以自由设定,登录时应可设置3个以上安全级别,以确保数据的安全性和保密性。	符合
接口与显验	A、数据采集传输仪应具备标准串行口(RS485/RS232)接口、 维电器输出接口等,可以通过RS485/RS232接口,向上位 机发送数据。以便实时监控烟气排放状况。 B、数据采集传输仪接口应具有扩展功能、模块化结构设计。 可根据使用要求,增加输入、输出通道的数量,以满足用 户的各项监控功能要求。 C、数据采集传输仪应能实时显示烟气污染源在线监测仪器 和辅助设备的工作状态和报警信息,可以用图、表方式实 时验 示污染物排放状况和环境参数。	符合

诊断检查	数据采集传输仪对烟气在线监测仪路具备故障,	1/1/2
19:40/12/E	能(传感器故障报警、超桥服警、通信故障报警、统电记录 等)。	有限点
独立性检查	当数据采集传输仪与上位机通信中断时,数据采集传输仪 能独立工作。仍具有数据采集、控制烟气污染源企线临湖 仪器和辅助设备 运行等各种功能。	特点
管理安全 检查	应具备安全管理功能,操作人员需登录账号和密码后,才 能进入控制界面,对所有的操作均自动记录、保存,登录 时应具备不少于3级以上操作管理权限。	符合
数据通信 与检索检 查	1、数据处理检查 数据采集传输仪可存储 12 个月及以上的原始散据,记录 烟气测定数据和各类仪器运行状态数据,自动生成运行状 况报告、烟气测定数据报告、掉电记录报告、操作记录报 告和仪器校准报告。 A、烟气测定数据和各类仪器运行状态数据(详见四) B、掉电记录报告 当数据采集传输仪外部电源掉电又恢复供电时,系统应 能自动启动,自动恢复运行状态并记录出现掉电的时间和 恢复运行的时间。 C操作记录报告 对运行参数设置的修改等操作,数据采集 传输仪自动记录,可对这些记录调用。 2、数据检索功能 能检索不同日期的历史数据,并进行报表统计和图形曲线 分析:自动生成日报、月报、年报。	符合
现场故障 模拟恢复 试验	烟气污染源在线监测系统现场验收过程 中,人为模拟现场断电、断气和断历等故障, 在恢复供电等外部条件后,烟气污染源在线监 测系统应能正常自启动和远程控制启动。在数	符合
	据采集传输仪中保存故障前完整分析和分析结果,并在故障过程中 不被丢失。数据采集传输仪完整记录所有故障信息	


三、联网调试情况

各项性能	性能指标	检查 结果
通讯稳定 性	数据采集传输仪和上位机之间的通信稳定,不出现经常性的通信连接中断、报文丢失、报文不完整等通信问题。数据采集传输仪在线率为95%以上,正常情况下,掉线后,应在5分钟之内重新上线。单台现场机(数据采集传输仪)每	符合

(6	日掉线次数在3次以内。数据传输稳定,报文传输稳定性 在99%以上,当出现报文错误或丢失时,启动纠错逻辑,要 求数据采集传输仪重新发送报文。	
数据传输安全性	为了保证监测数据在公共数据网上传输的安全性,所采用的数据采集传输仪,在需要时可以按照HJ212 中规定的加密方法进行加密处理传输,保证数据传输的安全性。一端请求连接另一端应进行身份验证。	符合
通讯协议安全性	采用的通信协议应完全符合 HJ212 的相关要求。	符合
数据传输 正确性	系統稳定运行一个月后,任取其中不少于连续7天的数据进行检查,要求上位机接收的数据和数据采集传输仪采集和存储的数据完全一致;同时检查烟气污染源在线监测仪器显示的测定值、数据采集传输仪所采集并存储的数据和上位机接收的数据,这三个环节的实时数据应保持一致。	符合
联网稳定 性	在连续一个月内,系统能稳定运行,不出现险通信稳定性、 通信协议正确性、数据传输工确性以外的其他联网问题。	符合
现场故障 模拟恢复 试验	在烟气污染源在线系统现场验收过程中,人为模拟现场断电、断气和断气等故障,在恢复供电等外部条件后,烟气污染源在线监测系线应能正常自启动和远程控制启动。在数据采集传输仪中保存故障前完整分析的分析结果,并在故障过程中不被丢失。数据采集传输仪完整记录所有故障信息。	符合

四、通信、联网稳定性及数据传输正确性统计分析

按国家标准,系统稳定运行后,任取其中不少于连续7天的数据进行检查,各项指标全部符合验收要求。

附件十七:验收组意见

上杭红新能源科技有限公司 1"、2"焚烧炉烟气连续监测系统 验收意见

上杭红新能源科技有限公司于2024年3月17日组织召开了1°、2°焚烧炉烟气连续监测系统验收会,参加会议的有聚光科技(杭州)股份有限公司(设备供应单位)、福建安格思安全环保技术有限公司(比对验收监测单位)等部门与单位的代表,以及应邀的2位专家,共计6人,会议成立了验收组(名单附后),与会专家和代表勘查了现场,听取项目概况、查看了试运行报告和比对验收监测报告内,经认真讨论、审议,形成以下验收审查意见:

一、项目概况

上杭红新能源科技有限公司在1°、2°焚烧炉分别建设一套烟气连续监测系统。两套系统包含聚光科技(杭州)股份有限公司生产的两套 CEMS-2000 B FT 型烟气(S02、N0X、HCL、C0)排放连续监测设施、Synspec PM 激光烟尘测试仪、MODEL 1080 温压流分析仪、HMS—200 氧化锆氧分析仪。完成仪器设备安装调试后投入试运行, 2024 年 2 月上杭红新能源科技有限公司委托福建安格思安全环保技术有限公司对该系统进行比对验收监测。

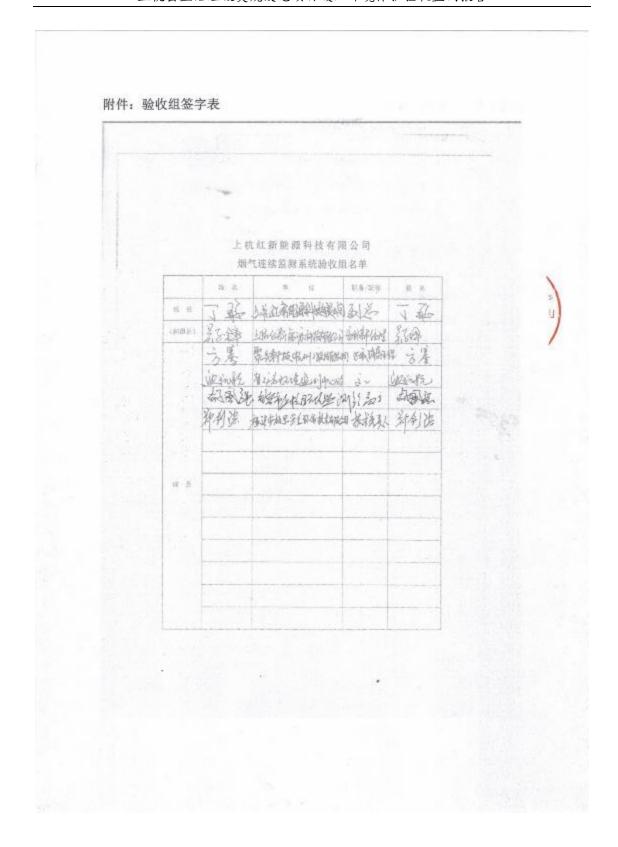
二、站房建设和气体采集设备

上杭 红 新 能 源 科 技 有 限 公 司 1°、2°焚烧炉烟气连续监测系统站房 建设基本满足相关要求,有专室专用,气体采集设备安装位置符合要求, 结合现场检查,原则同意站房建设和气体采集设备通过验收。

三、自动监测仪器及系统部分

根据试运行报告及福建安格思安全环保技术有限公司的比对验收监测报告,并通过现场检查,该系统采集部分、分析部分、传输控制部分等符合要求,仪器性能基本符合《固定污染源烟气(S02、N0x、颗粒物)排放连续监测技术规范(试行)》(HJT75—2017)等相关规定的要求,原则同意1*、2*焚烧炉烟气连续监测系统通过验收。

四、存在问题及建议


- 补充《生活垃圾焚烧发电厂现场监督检查技术指南》、《生活垃圾 焚烧发电厂自动监测数据应用管理规定》为验收依据,并按要求完善验收 要求和日常管理,做好设备的运维记录和技术档案,规范记录的填写。
- 完善站房建设情况说明(温度湿度控制、面积、视频监控、防雷设施、标气等),站房应选用合适消防器材(建议用二氧化碳灭火器)。
- 3. 完善设备的基本情况说明(功能、性能、量程)完善联网的佐证等 材料(部门证明或联网的截屏),系统故障、停用、拆除需及时上报上杭 生态环境局。
- 4. 说明设备的运维情况,加强设备管理人员的培训,管理人员需执证 上岗。

五、验收结论

上杭红新能源科技有限公司 1°、2°焚烧炉烟气连续监测系统基本符合《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范(试

行)》(HJ/T75-2017)等相关技术规范的要求,系统运行正常,验收组同意该项目通过竣工验收。

2024年3月17日

附件十八: 专家组复审意见

《上杭紅新能源科技有限公司 1p、2#焚烧炉烟气连续监测系 统验收报告》专家复申意见

上航紅新能源科技有限公司于2024年3月17日型與召开 了1°、2°雙條炉與气连续监測系統股股会。专家代表提出了视场整改 和报告核改意见。2024年3月23日。上航红新能源科技有限公司提供了《上杭红新能源科技有限公司提供了《上杭红新能源科技有限公司推供了《上杭红新能源科技有限公司能按照专家意见对部分工程现状存在的问题进行整改并提供了生证材料。验收报告根据专家、代表的教见进行了修改。修改后的验收报告满足要求,可作为竣工验收依据。专家组同意本项员通过竣工环境保护验收。

专家組长、別ないようと

2024年3月24日

固定污染源烟气排放连续监测系统 技术指标验收报告

项目名称:上杭红新能源科技有限公司焚烧炉 H1 (30173-1) 排放口

CEMS-2000 B FT 型烟气排放连续监测系统技术验收

CEMS 供应商、聚光科技(杭州)股份有限公司

运维单位:上杭红新能源科技有限公司

检测单位:福建安格思安全环保持术有限公司

验收单位: 上杭红新能源科技有影

2024年02月

1 前言

1.1 概况

2024年2月,上杭红新能源科技有限公司依据《固定污染源烟气(SO、NOx、颗粒物)排放连续监测技术规范》(HJ 75-2017)对焚烧炉 H1(即30173-1)排放口,CEMS-2000 B FT 型烟气连续监测系统、Synspec PM 烟气颗粒物在线监测系统、氧化锆氧分析仪、温压流分析仪技术指标进行验收。技术指标包括颗粒物、CO、SO2、NOx、氯化氢、含氧量、烟温、湿度、流速九项,其中有证标准气体和参比方法检测结果由福建安格思安全环保技术有限公司提供。

1.2 站房建设

实地测量采样点到监测站房距离为30米,站房面积为20.2m²,高度为8 米,标高为±0.00米,监测房内安装了冷暖空调,室温控制在15-30°C, 相对湿度≤60,空调安装了来电自启设备。监测房具备防水、防潮、隔热、 保温措施。具有 CEMS 数据传输的通讯条件。在监测房及采样平台各安装 有视频监控,视频可保存一个月。防雷监测接地电阻及过渡电阻符合要求。 配备了不同浓度的有证标气,且在有效期内。

1.3 设备基本情况

1.3.1 系统概述

CEMS-2000 B FT 型烟气连续监测系统是一款基于一款傅立叶变换 红外光谱分析技术的烟气分析系统,可在线监测 SO₂、NO_X (NO/NO₂)、 HCL、CO、O₂等多种有机无机气体,具有较高的精度和较宽的动态范围, 该系统整体采用"湿热法"采样技术,全程伴热,有效的保证了系统的测 量精度和准确度,适用于复杂工况条件下的恶劣现场的在线监测,同样可 应用于超低浓度检测。CEMS-2000 B FT 系统具有以下特点:

高性能:拥有高分辨率,宽波长范围(800-4400 cm),低检测下限, 多组分同时快速分析的特点,适合垃圾焚烧、超低排放领域。

高可靠:充分考虑实际使用工况,拥有更宽的温度、湿度的适用范围 样 气全程均匀保温 温度可测、可控。新电自保护,避免了仪器损坏。

可扩充因子库: 仪器可测量多种因子, 因子种类和数量由客户需求进 行定制, 在仪器出厂后同样可进行因子库的升级扩建, 具有广泛的应用性 和高效性。

件热管吹扫:系统流路设计中加入伴热管吹扫程序,具备更强的管路 自清洁能力,保证系统的长期稳定运行,提高产品的测量准确性和产品使 用寿命。

CEMS-2000 B FT 系统由气态污染物监测子系统、烟尘(颗粒物)监测子系统、烟气参数监测子系统以及数集与处理子系统 4 部分构成。其中,气态污染物监测子系统从采样探头到分析气体室进行了全程伴热,保证温

度的一致性,进而保证测量准确性。仪器的设计和制造,均遵照国内外检测标准规定,并参考了EPA320等国际标准,关键流程、检测项均实现了内部预置、预设,可实现开机全自动化测量。

1.3.2

气态污染物监测子系统采用 FTIR 气体分析仪与采样预处理系统结合,测量 SO2、 NOx (NO 、NO2)、 HCI 、 CO 等气体。

SO2 量程: 0-100-200mg/m³; NO 量程: 0-100-400mg/m³;

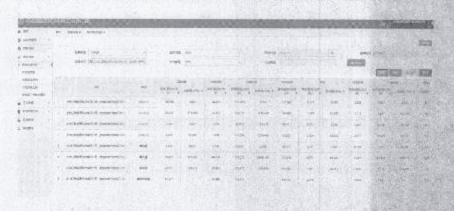
NO2 量程: 0-50-100mg/m3; HCI 量程: 0-50-150mg/m3;

CO 量程: 0-100-200mg/m³;

1.3.3 Synspec PM 烟气颗粒物在线监测系统

Synspec PM 型烟气颗粒物在线监测系统是为了满足湿烟气环境下低浓度颗粒物在线监测需求而开发。主要用于监测超低排放机组排口的颗粒物浓度,系统采用抽取式等速采样方式,利用光散射检测方法来实时检测颗粒物浓度,检测限低、响应速度快、测量范围广(最小 0-5mg/m³,最大 0-200mg/m³,支持双量程切换)。

监测系统主要由等动力采样探头(内含光散射测量模块)和控制箱组成。采样烟气中的水滴加热后迅速汽化后传输到光散射测量模块,通过对 颗粒物散射光信号实时分析处理,得到粉尘尝试。


1.3.4 氧化锆氧含量系统

氧化锆材料是一种氧化锆固体电解质,是在纯氧化锆中掺以一定量的 氧化钙或氧化钇,经高温烧结后形成的稳定的氧化锆陶瓷烧结体。由于它 的立方晶体中含有氧离子空穴,因此,在高温条件下它是良好的氧离子导 体。

利用它的这一特性,在一定的温度下,当传感器两侧的氧含量不同时,它便是一个典型的氧浓度差电池。如果在氧化锆管内外涂制纯铂电极,用电炉对氧化锆管加热,使其内外壁接触氧分压不同的气体,氧化锆管就成为了一个氧浓差电池。测量范围 0-25%。

烟气参数监测子系统包括烟气流速、烟气压力、烟气温度、烟气湿度。烟气湿度。烟气流速采用差压变送器测量,通过测量烟气流动中的全压和静压、换算得到烟气的流速。烟气温度采用铂电阻温度传感器测量,烟气湿度采用 FTIR 光谱法进行测量。。

设备已于 2023 年 11 月 22 日完成联网 (附省亲清平台在线监控截屏)

1.4 设备运维

公司在线设备自主运维,运维人员有多年维保经验,并取得了中国环境保护协会颁发的《自动监控(烟尘烟气运行工)》证书。王文祥,证书号; ZDJK(YCYQ)-202304179。陈宽毅,证书号; ZDJK(YCYQ)-202206456 技术指标验收结果汇总如下;

2 比对监测依据

- (1) 《固定污染源烟气(SO₂、NO_x、颗粒物) 排放连续监测技术 规范》(HJ 75-2017):
- (2)《固定污染源烟气(SO₂、NO_X、颗粒物)排放连续监测系统 技术要求及检测方法》(HJ 76-2017);
- (3)《固定污染源排气中颗粒物测定与气态污染物采样方法》 (GB/T 16157-1996);
- (4) 《关于加强生活垃圾焚烧发电厂自动监控和监控执法工作的通知》(环办执法[2019]64 号附件 2, 2019.12.26)。
- (5)《生活垃圾焚烧发电厂现场监督检查技术指南》(HJ1307-2023);
- (6)《生活垃圾焚烧发电自动监测数据应用管理规定》(生态环境部 第10号部令 2019.10.11)

2.1 技术指标验收内容

表 3-1 比对验收监测内容

序号	监测因子	給收指标
	· 明学阅读46600000000000000000000000000000000000	零点漂移
1	二氧化硫、氮氧化物、氮化氢、一氧化碳、含氧	量程源移
		示值误差

序号	监视因子	验收指标
		系统响应时间
		准确度
0.00		零点源移
2	颗粒物	量程標移
		准确度
3	烟温、烟气湿度、流速	准确度

2.2 评价标准

根据《固定污染源烟气(SO₂、NOx、颗粒物)排放连续监测技术规范》 (HJ 75-2017), 监测站房与采样点之间的距离应尽可能近,原则上不超过 70m,比对监测要求详见表 3-2 和表 3-3。

表 3-2 CEMS 验收比对技术要求

检額	项目		
		示值误差	当满量程≥100µmol/mol(286mg/m³)时,示值误差不超过±5%(相对于标准气体标章值); 当满量程<100µmol/mol(286mg/m³)时,示值误差不超过±2.5%(相对于仪表满量程值)。
4	100	系统响应时间	≤200s
体污	-	零点源移、量 程漂移	不超过±2.5%
染物	氧化		排放液度≥250µmol/mol (715mg/m³) 时,相对准确度≤15%
C E M	杭	准确度	50μmol/mol(143mg/m³)≤排放浓度<250μmol/mol(715mg/m³)时,绝对误差不超出 ±20μmol/mol(57mg/m³)
S		TE HELX	20μmol/mol(57mg/m³)≤排放浓度<50μmol/mol(143mg/m³)时,相对误差不超出±30%
			抖放浓度<20µmol/mol(57mg/m³)时,绝对误差不超过±6µmol/mol(17mg/m³)

Adv 45 0 0	CURRE	TA HEY LIVE	对技术要求
59-25 0-2	CEMPS	HE YX LL	图 300 水 安水

检测等	目		技术要求
	S	示值误差	当满量程≥200µmol/mol(410mg/m³)时,示值误差不超过±5%(相对于标准气体标称值) 当满量程<200µmol/mol(410mg/m³)时,示值误差不超过±2.5%(相对于仅表满量程值)
		系统响应时间	≤200s
	K.	零点原移、量 程漂移	不超过±2.5%
	氧化		排放浓度≥250µmol/mol (513mg/m³) 时,相对准确度≤15%
co-os m	物	准确度	50μmol/mol(103mg/m³)≤排放浓度<250μmol/mol(513mg/m³)时,他对误差不超出 ±20μmol/mol(41mg/m³)
体		74-7828	20µmol/mol (41mg/m³) ≤排放浓度<50µmol/mol (103mg/m³) 时,相对误差不超出±309
污染			排放浓度<20µmol/mol(41mg/m³)时,绝对误差不超过±6µmol/mol(12mg/m³)
物 C E		示值误差	当满量程≥200µmol/mol(250mg/m³)时,示值误差不超过±5%(相对于标准气体标称值) 当满量程<200µmol/mol(250mg/m³)时,示值误差不超过±2.5%(相对于仅表满量程值)
M S 氧化碳	H	系统响应时间	≤200s
		零点漂移、量 程漂移	不超过±2.5%
	0.70		排放浓度≥250µmol/mol (313mg/m³) 时,相对准确度≤15%
	祆	准确度	50µmol/mol(63mg/m³)≤排放浓度<250µmol/mol(313mg/m³)对,绝对误差不超出 +20µmol/mol(25mg/m³)
	秡		20µmol/mol(25mg/m³)≤排放浓度<50µmol/mol〈63mg/m³〉时,相对误差不超出±30%
			排放浓度<20μmol/mol(25mg/m³)时,绝对误差不超过±6μmol/mol(8mg/m³)
		示值误差	当满量程≥200µmol/mol(326mg/m³)时,示值误差不超过±5%(相对于标准气体标称值) 当满量程<200µmol/mol(326mg/m³)时,示值误差不超过±2.5%(相对于仅表涉量程值)
气体		系统响应时间	≤400s
15	氯化	零点源移、量 程漂移	不超过±2.5%
物	氮		/ 材放浓度≥250μmol/mol(408mg/m³)时,相对准确度≤15%
CE MS		准确度	50µmol/mol (82mg/m³)≤排放浓度≤250µmol/mol (408mg/m³)时,相对误弃不超过±30%
			排放浓度<500µmol/mol(82mg/m³)时,绝对误差不超过±15µmol/mol(24mg/m³)
3		示值误差	不超过±5%(相对于标准气体标称值)
201		系统响应时间	≤200s
報代	O ₁	零点源移、量 程源移	不超过+2.5%
CM	t Co		
100000		准确度	>5.0%,相对准确度≤15%

续表 3-2	CEMS	验收出效	技术要求

企測	项目		技术要求
颗粒 颗	写点课移、量 程憑移	不超过+2%F,S.	
物 C	粒物		排放浓度≤10mg/m³,绝对误差不超过±5mg/m³。
E M S	490	准确度	10 mg/m³<排放浓度≤20mg/m³ 时,绝对误差不超 过±6mg/m³。 ≤5%
		精密度	≤5%
流速	W.	相关系数	≥9 个数捱时,相关系数≥0.90
C M S	施速	准确度	流速>10m/s,相对误差不超过±10%
		作机及	流速≤10m/s。相对误差不超过±12%
温度 C M S	温度	绝对误差	不超过±3℃
湿度	湿		烟气湿度>5.0%,相对误差不超过±25%
C M S	度	准确度	烟气湿度≤5.0%,绝对误差不超过±1.5%

2.3 比对结果

企业名称:上杭红新能源科技有限公司 安装位置: 焚烧炉 HI/H2 排放口(即 30173-1) 排 气筒出口

检测单位:福建安格思安全环保科技有限公司

检测日期:2024年02月01日-02日

CEMS 供应商:聚光科技(杭州)股份有限公司

SHEWOR.		CEM	S主要仪器型号				THE WAR	
仪器名称	设备型号	Value of	制造商	- 5	程	- 8	量方法	
温度	TPT-100			0-40	00°C	Pt1	00/电容、 绝压法	
流速 湿度 二氧化箭 類氧化物 一氧化碳 氯化氢			0-4			11.71	皮托管	
湿度				0-4	10%	湿度	极限电流的	
二氧化硫			聚光科技	0-200	mg/m3	100000000		
類氧化物	FT-100		(杭州)股份有限公司		mg/m3		光谱法	
一氧化碳					mg/m3		光谱法	
氟化氢				0~120	mg/m3	傅立叶变换红外 光谱法		
含氧量	HMS-200 Synspec PM			02	15%	3	【化告法	
顆粒物	近度							
	零点擦除、量程器	票移、示值	误差、系统响应时间。	推确度			VERSE.	
ij	員名称		技术要求	Well I	检测组	音果	是否符合	
二氧化碳	零点源穆	JUS -	1924	0%		符合		
	量程等移	3015	不超过±2.5%	N. H.	-0,24	4%	符合	
	示值误差	1200	不超过±2.5%	0.36	%	符合		
	系统响应时间					122s		
	准确度	排放浓度				g/m³	符合	
	零点漆漆	1740700			09	0	符合	
	量程源移				-		符合	
氮氧化物 -	示值误差						、符合	
	系统响应时间	47.555			0.000		符合	
ja (S	准确度	H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	对误差不超出±30%			1%	符合	
	零点源移	不超过±2.5%			0%		符合	
	量程源移	The State	不超过±2.5%		-0.73	5%	符合	
一氧化碳	示值误差	San A	不超过±2.5%		1.93	1%	符合	
	系统响应时间		-2000	CALS IN	98	8	符合	
	准确度	排放浓度	THE RESERVE TO STATE OF THE PARTY OF THE PAR	误差不	-0.4m	g/m³	符合	
	零点漂移	不超过±2				6	符合	
	量程漂移	不超过±2	2.5%	Me	0.70	196	符合	
氮化氢	示值误差		不超过=2.5%		0.66	1%	符合。	
	系统响应时间		≤400s		11	Bs	符合	
	准确度	排放浓度		误差不	-0.7m	g/m³	符合	
含氧量	零点漂移	1638	不超过±2.5%	181050	0.22	29%	符合	

	量程等移	不超过=2.5%	0.87%	符合		
	示值误差	±5%(相对于标准气体标称值)	-3.24%	符合		
	系统响应时间	≤200s	31s	符合		
	准确度	>5.0%, 相对准确度≤15%	5.99%	符合		
	零点源移	不超过±2.0%	0.04%	符合		
颗粒物	量程源移	不超过+2.0%	0.03%	符合。		
	确度	>5.0%。相对准确度≤15%	5.99%	符合		
流速	准确度 相]对误差不超过±10%	4.20%	符合		
温度	绝对误差 不	·超过±3℃				
湿度	准确度 材	对误差不超过±25%	-0.44%	符合		
				计器: 美国雷		
	结果为监测站房与采样 物〉排放连续监测技术 尽可能近,原则上不超	点之间距离 27 米,符合《固定污染源是 规范》(HJ75-2017)内容规定的监测站/ 过 70m 的规定。	明气(SO ₂ 、) 房与采样点2	之间种类应		
	结果为监测站房与采样物〉排放连续监测技术 尽可能近,原则上不超 标准气体名称	点之间距离 27 米,符合《固定污染源源 规范》(HJ75-2017)内容规定的监测站) 过 70m 的规定。 浓度值	明气(SO ₂ 、) 房与采样点2	NOx、類粒		
二年	结果为监测站房与采样物)排放连续监测技术 尽可能近,原则上不超 标准气体名称 U.C硫 (mg/m²)	点之何距离 27 米,符合《固定污染源源 规范》(HJ75-2017)内容规定的监测站》 过 70m 的规定。 浓度值 172(高)、113.71(中)、57.14(低)	明气(SO ₂ 、) 房与采样点2	NOx、類粒 と何距离应		
	结果为监测站房与采样物》;排放连续监测技术 尽可能近,原则上不超 标准气体名称 ①化硫(mg/m²) 《化银(mg/m²)	点之间距离 27 米,符合《固定污染源源 规范》(HJ75-2017)内容规定的监测站》 过 70m 的规定。	時代(SO ₂ 、) 房与采样点之 生产厂	NOX、類粒 之间距离应 商名称		
=1 -1 -1	结果为监测站房与采样物》,排放连续监测技术 尽可能近,原则上不超标准气体名称 风化硫(mg/m³) 风化氮(mg/m³) 风化氮(mg/m³)	点之间距离 27 米,符合《固定污染源源 规范》(HJ75-2017)内容规定的篮测站 过 70m 的规定。 浓度值 172(高)、113.71(中)、57.14(低) 199.6(高)、125(中)、60.1(低) 45.4(高)、29.37(中)、11.29(低)	#竹(SO ₂ 、) 房与采样点ス 生产」 済南徳洋等	NOX、類粒 と同距离应 商名称		
=4 -4 -4 -4	结果为监测站房与采样物)排放连续监测技术 尽可能近,原则上不超标准气体名称 C(化硫 (mg/m³) C(化氮 (mg/m³) C(化氮 (mg/m³) C(化氮 (mg/m³)	点之间距离 27 米,符合《固定污染源源 规范》(HJ75-2017)内容规定的篮测站/ 过 70m 的规定。 浓度值 172(高)、113.71(中)、57.14(低) 199.6(高)、125(中)、60.1(低) 45.4(高)、29.37(中)、11.29(低) 181.3(高)、110(中)、50.4(低)	#竹(SO ₂ 、) 房与采样点ス 生产」 済南徳洋等 現2 安敦强源**	NOX、類粒 之间距离应 商名称		
=19 -19 -19 -19	结果为监测站房与采样物)排放连续监测技术 尽可能近,原则上不超标准气体名称 气化硫(mg/m³) 氧化氯(mg/m³) 氧化氯(mg/m³) 氧化氯(mg/m³)	点之何距离 27 米,符合《固定污染源源 规范》(HJ75-2017)内容规定的监测站》 过 70m 的规定。	#竹(SO ₂ 、) 房与采样点ス 生产」 済南徳洋等	NOX、類粒 之间距离应 商名称 存种气体有 公司体有限公司		
二年 一年 二年 一年	结果为监测站房与采样物) 排放连续监测技术 尽可能近,原则上不超标准气体名称 气化硫(mg/m²) 或化氮(mg/m²) 或化氮(mg/m²) 或化氮(mg/m²) 、化氮(mg/m²)	点之间距离 27 米,符合《固定污染源源 规范》(HJ75-2017)内容规定的篮测站 过 70m 的规定。 浓度值 172(高)、113.71(中)、57.14(低) 199.6(高)、125(中)、60.1(低) 45.4(高)、29.37(中)、11.29(低) 181.3(高)、110(中)、50.4(低) 115.7(高)、70.7(中)、27.86(低) 47.14(高)、28.89(中)、10.42(低)	#竹(SO ₂ 、) 房与采样点ス 生产] 済南徳洋等 保全 安徽强源 ⁶	NOX、類粒 之间距离应 等名称 存有 等 分質 体有 版 切成功等 体		
二年 一年 二年 一年	结果为监测结房与采样物》并放连续监测技术 尽可能近,原则上不超标准气体名称 风化硫 (mg/m²) 风化氮 (mg/m²) 风化氮 (mg/m²) 风化氮 (mg/m²) 、	点之间距离 27 米,符合《固定污染源源 规范》(HJ75-2017)内容规定的篮测站 过 70m 的规定。	時((SO ₂ 、) 房与采样点之 生产) 济南德洋教 安徽强源。 福建南安省	NOX、類粒 之间距离应 等名称 存有 等 分質 体有 版 切成功 等 体		
二: \$ - \$ - \$ - \$	结果为监测站房与采样物) 排放连续监测技术 尽可能近,原则上不超标准气体名称 气化硫(mg/m²) 气化氮(mg/m²) 气化氮(mg/m²) 气化氮(mg/m²) 氦化碳(mg/m²) 氦(mg/m²) 氦(mg/m²)	点之间距离 27 米,符合《固定污染源源规范》(HJ75-2017)内容规定的篮测站》过 70m 的规定。 浓度值 172(高)、113.71(中)、57.14(低) 199.6(高)、125(中)、60.1(低) 45.4(高)、29.37(中)、11.29(低) 181.3(高)、110(中)、50.4(低) 115.7(高)、70.7(中)、27.86(低) 47.14(高)、28.89(中)、10.42(低) 20.91(高)、13.5(中)、6.01(低) 99.999(零气)	時((SO ₂ 、) 房与采样点之 生产) 济南德洋学 安徽强源 海 福建南安市 有限	NOX、類粒 之间距离应 等名称 等种气体有 设体有 设成功气体		
二: \$ - \$ - \$ - \$	结果为监测站房与采样物》并放连续监测技术 尽可能近,原则上不超标准气体名称 风化硫 (mg/m²) 风化氮 (mg/m²) 风化氮 (mg/m²) 风化氮 (mg/m²) 板 (mg/m²) 氨 (mg/m²) 氧 (mg/m²) 氧 (%) 极 仅器生产商	点之间距离 27 米,符合《固定污染源源 规范》(HJ75-2017)内容规定的篮测站 过 70m 的规定。	時((SO ₂ 、) 房与采样点之 生产) 济南德洋学 安徽强源 海 福建南安市 有限	NOX、類粒 之间距离应 等名称 存有 等 分質 体有 版 切成功 等 体		
	结果为监测结房与采样物》并放连续监测技术 尽可能近,原则上不超标准气体名称 风化硫 (mg/m²) 风化氮 (mg/m²) 风化氮 (mg/m²) 风化氮 (mg/m²) 板 (mg/m²) 氨 (mg/m²) 氧气 (%) 极 (kg (mg/m²) 有限公司	点之间距离 27 米,符合《固定污染源源规范》(HJ75-2017)内容规定的篮测站》 规范》(HJ75-2017)内容规定的篮测站》 过 70m 的规定。	的((SO ₂ 、) 房与采样点之 生产) 济南德洋泉 安徽强源 有实验 有实验	NOX、類粒 之间距离病 有名称 种气体有 以成功气体 依据 依据		
二年 一年 一年 無 制 参比類试項 目	结果为监测结房与采样物》并放连续监测技术 尽可能近,原则上不超标准气体名称 风化硫 (mg/m²) 风化氮 (mg/m²) 风化氮 (mg/m²) 风化氮 (mg/m²) 爱 (mg/m²) 爱 (mg/m²) 爱 (mg/m²) 爱 (mg/m²) 爱 (mg/m²)	点之间距离 27 米,符合《固定污染源源规范》(HJ75-2017)内容规定的篮测站》 规范》(HJ75-2017)内容规定的篮测站》 过 70m 的规定。	的((SO ₂ 、) 房与采样点之 生产) 济南德洋泉 安徽强源 有实验 有实验	NOX、類粒 之间距离应 等名称 等种气体有 设体有 设成功气体		
	结果为监测结房与采样物》并放连续监测技术 尽可能近,原则上不超标准气体名称 现化筑(mg/m²) 或化筑(mg/m²) 或化筑(mg/m²) 或化筑(mg/m²) 数(mg/m³) 数(mg/m³) 数(mg/m³) 有一个个个个个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	点之间距离 27 米,符合《固定污染源源 規范》(HJ75-2017)內容規定的篇劃站 过 70m 的規定。	的((SO ₂ 、) 房与采样点之 生产) 济南德洋泉 安徽强源 有实验 有实验	NOx、類素的 在 NOx。類素的 在 NOx		

温度			铂电阻
抗速		The state of the s	S型皮托管
氯化氢	天津市天科玻璃仪器 制造有限公司	海定普	纳氏试剂分光光度法
氨	上海美譜达仪器有限 公司	可见分光光度计	朝酸银春量法
备注:	本报告氦氦化物以NO2计:	均以一氧化氦转化,转化公式	C:NO*1.53=NO2.

3 质量保证及质量控制

比对监测所使用的检测仪器均经过计量部门检定合格并在有效期内。 为了保证监测数据的准确性和有效性,监测前对使用的仪器均进行浓度校准,按规定对废气测试仪进行现场检漏,采样和分析过程严格按照《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)、《固定污染源监测质量保证与质量控制技术规范(试行)》(HJ/T 373-2007)和《固定源废气监测技术规范》(HJ/T 397-2007)执行。本次监测所有的记录和监测数据严格实行三级审核制度。

4 附件

附件1气态污染物 CEMS (二氧化硫) 示值误差、系统响应时间、零点、量程漂移和准确度检测

附件 2 气态污染物 CEMS (一氧化氮) 示值误差、系统响应时间、零点、量程漂移和 (氦氧化物) 准确度检测

附件 3 气态污染物 CEMS (一氧化碳) 示值误差、系统响应时间、零点、量程漂移和 (氮氧化物) 准确度检测

附件 4 气态污染物 CEMS (氯化氢) 示值误差、系统响应时间、零点、 量程漂移和 (氦氧化物) 准确度检测

附件 5 气态污染物 CEMS (氧气) 示值误差、系统响应时间、零点、 量程漂移和准确度检测

附件 6 颗粒物 CEMS 零点、量程漂移和准确度检测 附件 7 参比方法评估流速 CMS 准确度 附件 8 参比方法评估烟气温度 CMS 准确度

附件9参比方法评估湿度 CMS 准确度

附件 10 验收比对报告

附件 11 CEMS 设备检测报告

附件 12 试运行报告

附件13站房及配套设施照片

附件14运维规章制度

附件 15 联网测试报告

附件 16 运行维护台账

附件 17 验收意见

附件 18 专家复审意见

附件1气态污染物 CEMS (二氧化硫) 示值误差、系统响应时间、零点、量程漂移和准确度检测

附表 1-1 气态污染物 CEMS (二氧化硫) 示值误差和系统响应时间检测

序号 标准气体参 考值	标准气体条	CEMS 显示	CEMS 显示	示值误差 (%)	系统响应时间 (s)				
	LIVACONO USO SATINGO	值	值得平均值			徳定值			
	lia.	DETALL SOLE	(70)	T1	T2	T=T1+T2	平均值		
1	172.3	174.133	S 10 11 11		41	82	123	E BECKE	
2		170.675	171.75	-0.28	39	81	120	122	
3		170.442			41	81	122		
4		114.467			31	40	76	116	2.3
5	113.71	115.975	114.4	0.34	41	78	119	116	
6		112,758			39	74	113		
7	ALC: N	57.6	WITE SHIP		41	75	116	0	
8	57.14	57,483	57.864	0.36	42	77	119	116	
9		58.508			40	72	112		

附表 1-2 气态污染物 CEMS (二氧化硫) 零点和量程漂移检测

	Ales						计量单位(mg/m³)				
	时间			零点濃移鎖 对误差		- 學時间		量程i		量程讓移绝 对误差	
开始	结束	起始 (Zo)	最终 (Z _c)	$\triangle Z = Z_i - Z_0$	开始	61	束	远始 (S ₀)	最终 (S _i)	△S=S ₁ -S ₂	各
024.02.02	2 2024.02.03		0	0	2024.02.0		02.02	173.317	V	-4.700	
01 0135	零点源移绝对误差最大值(mg/m³) 0		0		1000		大值(m	g/m ³)	4,700		
(\$7E-1	零点源移	(%)		0		量和	2源移	(%)		-0.24	
		附表 1-3	参比方法	上 法评估气态	污染物 CI	EMS C	二氧化	硫)准	角度		
	進試日期	序号	时间 (15	AND DESCRIPTION OF THE PARTY OF	参比方法测	-832386 rol	and the same	s 測量值	B 数数	BAA	
		1	11:48-	-11:53	ND			1.369	100	.131	
		2	12:20-	12:25	ND	A S	JII S	2.041	0	541	
		3	12:28-12:33		ND	ND		1,604 0,1		101	
	4	12:43-12:48		ND		1,678		178			
		5	13:00~13:05		ND		2.019 0.1		519		
		6	13:07~13:12		ND		CANADA WAR		293		
		7	13:16-13:21		ND		1.473 -0.		.027		
	2024.02.02	- 8	13:55	-14:00	ND	ND				365	
		9	14:02~14:07		ND					139	
		平均值		ND				220			
		数据对差的平均值的绝对值		0.220							
			数据对差的标准编差		0.23						
			置信系数		0.18						
			自对准确度		26.5%						
			绝对误差			-0.2					
		相对误差				参比方	6.8	and the same	相对误差	(00)	
			名称		保证值 一	采样前	1		花样前	采样后	
	标准气体			0.20	57.14	57.6	-	.8	0.8	1,2	
			二氧化硫		113.71	110.6		4.8	-2.7	1.0	
·			Ph. 1710						*		

172 170.5 171.4 -0.9 -0.3

注: ND 表示检测结果低于方法检出限, 计算平均值以检出限的 1/2 参与统计。

附件 2 气态污染物 CEMS (一氧化氮) 示值误差、系统响应时间、零点、 量程漂移和 (氮氧化物) 准确度检测

附表 2-1 气态污染物 CEMS (一氧化氯) 示值误差和系统响应时间检测

	标准气体参	CEMS	CEMS 显示	示值误差		系统响	应时间 (s)	STATE OF A
序号		考值 显示值 值往		小鼠民在 (%)		領定值	- 1000	平均值
	-9 III.			1797	TI	T2	T-T1+T2	1 2418
1		202.317	and the same	and the second	19	73	92	
2	200.9	202.475	202.589	0.73	-23	68	91	92
3		202.975	KIND OF		29	65	94	
4		123.983		100	21	67	88	
5	125	125.225	124.389	-0.27	27	69	96	93
6		123.958			24	70	94	
7		61.658		- FEET	20	65	85	
8	60.1	59.275	61.314	0.53	26	69	95	92
9		63.008			24	72	96	

附表 2-2 气态污染物 CEMS (一氧化氮) 零点和量程漂移检测

		itt	量单位(mg/m³)			\$1 m	单位(mg	g/m ³)	
Н	才何	零点	读数	零点漂移绝 对误差	B.	间	量程	读数	量程源移绝 对误差	
开始	结束	起始 (Z ₀)	最终 (Z _i)	△Z=ZrZo	开始	结束	起始 (S ₀)	最終 (S _i)	$\triangle S = S_i - S_0$	备名
2024.02.02 08:59	2024.02.02 55:57	0	0	0	2024.02.02 09:12	2024.02.02 23:07	200.542	195.725	-4.817	
零点源程	多绝对误差最大	大值 (mg	/m³)	0	量程源	移绝对误差最	大值(mg	(m ³)	4.817	
	零点漂移(%)		0		量程漂移	(%)		-2.09	

附表 2-3 参比方法评估气态污染物 CFMS (领领化物) 准确度

测试日期	序号	时间(时、分)	参比方法測量值 A	CEMS 測量值 B	数据对差 -B-A
217	1	11:48-11:53	125	139,793	14.793
	2	12:20~12:25	46	48.078	2.078
	3	12:28-12:33	56	65.708	9.708
2024.02.02	4	12:43-12:48	81	102.207	21,207
	5	13:00~13:05	73	82.176	9.176
	6	13:07~13:12	49	57.848	8.848
	7	13:16~13:21	52	52,752	0.752

	8	13:55~14:00	12	13	129.55	9	6,559
	9	14:02~14:07	12,790.12	7 (911/13)	142.27	8	15,278
	7 7	平均值	8	1	91.155		10,155
	数据对象	总的平均值的绝对值			10.155		
	数据	对差的标准偏差	1884		6.50		
	Total land	置信系数			5.00	0.05	
	1 70 8	相对准确度	FFE.		18.2%		
		绝对误差			10.2		
		相对误差	mil.		5,69%		
		de side	Mary Mr	参比方征	去测量值	相对误	差 (%)
		名称	保证值	采样前	采样后	采样前	采样后
标准气体	W.	Parties (60.1	61.1	62.7	1.7	4.3
	AN I	一氧化氯	125	125.7	127.6	0.6	2.1
			199.6	201.3	197.4	0.9	-1.1

附件 3CEMS (一氧化碳) 示值误差、系统响应时间、零点、量程漂移和 准确度检测

附表 3-1CEMS (一氧化碳) 示值误差和系统响应时间检测

1	SEMENTAL AND	CEMS	CEMS 显示	示值误差		系统响流	应时间 (s)	10 Sec.
序号	标准气体参	考值 显示值 值得引		(%)		測定值	-115000000	平均值
	-910			1 2018 (70)		12	T=T1-T2	Lose He
1		184.392		STATE OF	40	51	91	
2	181	185.742	184.864	184.864 1.93 36	65	101	98	
3		184.458			30	72	102	
4	STATE OF THE PARTY	111.633	And space	1.32	34	55	89	
5	110	110.575	111.455		1.32	33	61	94
6		112,158	Mar Vive	EGILATE:	41	68	109	
7	MANUFACTURES.	50.55	THE PERSON NAMED IN	0:0/HEH:	34	64	98	
8	50.4	51.892	51.014	1.22	35	57	92	93
9	Marian 181	50.6	Little State of		37	53	90	Marie Co.

附表 3-2 气态污染物 CEMS (一氧化碳) 零点和量程漂移检测

		itt	聖単位 (mg/m³)			计编	羊位(m	ig/m³)	
#	t (iii)	急点	读数	事点源移绝 对误差	89	间	量程读数 ^{具程讓參約} 对灵差		量程漆排绝 对误差	37
开始	结束	起始 (Z ₀)	最終 (Z)	△Z= Z _i -Z ₀	开始	结束	起始 (S ₀)	最終 (S _i)	△S= S-S ₀	备行

2024.02.02 08:59	2024.02.02 22:57	0	0	0	2024.02.02 09:19	2024.02.02 23:22	183.858	182.367	-1.491	-
零点漂和	多绝对误差最大	th (my	/m ²)	0	量程源	移绝对误差最	大值(mg	m3)	1.491	
	零点漂移(%)		0		量程源移	(%)	1 1 2	-0.75	

White a a do the	-b-5-b-5mr 44-8	of -8-35 50 Albert	CONTROL !	Air / Lyste V	369-305 (2c)
附表 3-3 参比	力法评值。	1,02215 96 90	CEMS	一型化個	在#1/多

测试日期	序号	时间(时、分)	参比方法	凝量值 A	CEMS 到量	άΒ	数据对差 =B-A	
	1	11:48~11:53	N	D	1.891		0.391	
2024.02.22	2	12:20~12:25	N	D	2.032		0.532	
	3	12:28-12:33	N	D	1.738		0.238	
	4	12:43~12:48	N	D	2.034		0.534	
	5	13:00-13:05	N	D	1.998		0,498	
	6	13:07~13:12	N	D	2.162	- 1	0.62	
	7	13:16-13:21	N	D	1.691	19/3	0.191	
2024 02 22	8	13:55~14:00	N	D	2.176		0.676	
2024.02.22	9	14:02-14:07	ND		1.812		0.312	
		平均值	N	D	1.948		0.448	
	数据对象	皇的平均值的绝对值			0.448			
	数据	对差的标准偏差	Radik		0.18	X P		
		置信系数	BAR		0.13			
		相对准确度	Retail B		38.9%			
		绝对误差			-0.4			
F AL	(I INVEST	相对误差			13.0%			
		4+ 850	ATT LICENS	参比方	法测量值	相对证	吳差(%)	
		名称	保证值	采样前	采样后	采样前	采样后	
标准气体			50.4	51.3	52.7	1.8	4.6	
		一氧化碳	110	109.0	111,9	-0.9	1.7	
			181.3	181.6	184.2	0.2	1.6	

附件 4CEMS (氯化氢) 示值误差、系统响应时间、零点、量程漂移和准确度检测

附表 4-1CEMS (氯化氢) 示值误差和系统响应时间检测

VIII.	Inches	CICATO	CEMS 显示	示值误差	THE STATE OF	系统响应	並时间 (s)	理性に	
序号	标准气体参 考值	CEMS 显示值	值得平均值	(%)	測定債			平均值	
	-512	李祖 医科丁科		(30)	TI	T2	T=T1+T2	.I AS III	
1	2000	116.708	A Commission of	0.42	42	83	125	A PROPERTY.	
2	115.7	114.117	116.200		41	71	112	117	
3	100 7 - 6	117,775			39	76	115		
4	SCOOL STORES	69.483	1 2000000		38	80	118		
5	70,7	72.958	71.489	0.66	40	81	121	117	
6		72.025	100000000000000000000000000000000000000		39	74	113		
7		26.375		and and	47	78	125		
8	27.86	27.625	27.156	-0.59	34	76	110	118	
9		27.467		Edward .	38	80	118		

附表 4-2 气态污染物 CEMS (氯化氢) 零点和量程漂移检测

		iti	監羊位 (mg/m³)			计量	学位(m	g/m³)	
	时间	琴点	读数	零点源移绝 对误差	B)	间	量程	读数	量程源移绝 对误差	
开始	结束	起始 (Z ₀)	最终 (Z)	$\triangle Z=Z_i-Z_0$	开始	结束	起始 (S ₀)	最终 (Si)	$\triangle S = S_i \cdot S_0$	备往
2024.02.02 08:59	2024.02.02 22:59	0	0	0	2024.02.02 10:03	2024.02.02 23:36	115,242	116.083	0.841	
写点演	移绝对误差最大	大值 (mg	/m³)	0	量程派	移绝对误差最	大值(mg	/m³)	0.841	
	零点漂移(%)		0		最程漂移	(%)	133	0.70	

附表 4-3 参比方法评估气态污染物 CEMS (氯化氢) 准确度

類试日期	序号	树甸(时、分)	参比方法测量值 A	CEMS 測量值 B	数据对差 -B-A
	1	11:48-12:03	27.3	26.834	-0.466
	2	12:03-12:18	9.5	8.274	-1.226
	3	12:19-12:34	6.7	6.422	-0.278
2024.02.02	4	12:35~12:50	13.3	12.509	-0.791
	5	12:50-13:05	23.3	21.764	-1,536
	6	13:06-13:21	25.5	24.295	-1,205
	7	13:22-13:37	ND	2.937	1.337

C			2011-3	2 2 1 E W
8	13:37~13:52	ND	3.062	1,462
9	13:53~14:10	23.3	20.483	-2.817
	平均值	14.8	14.064	-0.736
数据对差	总的平均值的绝对值		0.736	
数据	对差的标准偏差		1.16%	
	置信系数		0.89	
8	相对准确度		11.0%	
	绝对误差		-0.7	
	相对误差		-2.5%	simalis di
 				100000000000000000000000000000000000000

附件 5CEMS(含氧量)示值误差、系统响应时间、零点、量程漂移和准确度检测

附表 5-1CEMS(含氧量)示值误差和系统响应时间检测

	标准气体参	CEMS 显示	CEMS 显示	示值误差		系统响	应时间 (s)	
序号。	考值	值	值得平均值	(%)		測定值		平均值
	-A IN	IH.	IF 444 1 199 III	130	TI	T2	T=T1+T2	上的用
1	138 12	21:116			7	26	33	
2	20.91	21.115	21.071	0.77	3	23	26	29
3		20.982			4	25	29	
4		13.547	Off LSS	CONTRACTOR OF STREET	6	27	33	E-8888
5	13.5	13.532	13.527	0.20	5	21	26	29
6		13.501			3	24	27	
7		5.825			4	23	27	
8	6.01	5.816	5.815	-3.24	7	22	29	31
9		5.805			6	30	36	

附表 5-2CEMS(含氧量)零点和量程源移检测

		भे	量单位 (mg/m³)			计划	单位 (m	g/m ³)	E ST
B	ffi	零点	读数	零点漂移绝 对误差	B	间	量程	读数	量程课移绝 对误差	15.
开始	結束	起始 . (Z ₀)	最终 (Z _i)	△Z= Z ₁ -Z ₀	开始	结束	起始 (S ₀)	最终 (Si)	△S÷ S _∂ S ₀	备组
2024,02,02 10:34	2024.02.02 10:41	0.06	0.116	0:056	2024.02.02 10:40	2024.02.02 22:46	20,90	21.117	0.217	
零点源和	多绝对误差最力	大俏 (mg	/m³)	0.056	量程源	移绝对误差最	大值(mg	/m ³)	0.217	

零点漂移(%) 0.22 量程漂移(%) 0.87 附表 5-3 参比方法评估气 CEMS (含氧量) 准确度 系统响应时间(s) 标准气体参 CEMS 显示 CEMS 显示 示值误差 序号 测定值 值得平均值 考值 值 (%) 平均值 T=T1+T2 T2 26 21,116 21.071 0.77 29 20.91 21,115 26 29 33 20.982 13.547 29 13.5 13.532 13.527 0.20 26 13.501 27 5.825 5.815 -3.2431 6.01 5.816 8 30 36 5.805 附件 6 颗粒物 CEMS 零点、量程漂移和准确度检测 附表 6-1 颗粒物 CEMS 零点和量程漂移检测 计量单位(mg/m³)。 计量单位(mg/m³) 时间 时间 量程漂移绝 零点漂移绝 零点读数 量程读数 对误差 对误差 备注 最終 起始 振终 起始 开始 结束 △Z=Z-Z4 开始 结束 △S= S-S0 (Z_0) (Z_i) (S_0) (S.) 2024.02.02 2024.02.02 2024.02.02 2024.02.02 59.8 60. 0.2 0.078 0.102 0.024 10:29 22:10 10:41 22:17 零点漂移绝对误差最大值(mg/m³) 0.024 量程源移绝对误差最大值 (mg/m3) 0.2 零点漂移(%) 0.04 量程源移(%) 0.03 附表 6-2 颗粒物 CEMS 准确度检测 参比方法 CEMS 法 颗粒物 日期 时间 颗粒物重 测定值 颜色 标干体积 浓度 序 采样头编号 (mg) (L) (mg/m³) (mg/m^r) 12401137 0.67 1075.0 ND 1.408 无色 14:18-14:51 1 14:54-15:26 12401180 0.28 1003.7 ND 1.268 无色 2024.02.02 15:31-16:06 12401105 0.33 1017.6 ND 1.261 无色 无色 16:11-16:47 4 12401057 0.47 1004.1 ND 1.563 无色 16:54~16:29 12401058 0.30 1075.6 ND 1.466 绝对误差(mg/m³) 0.9 Company of the A. S. of

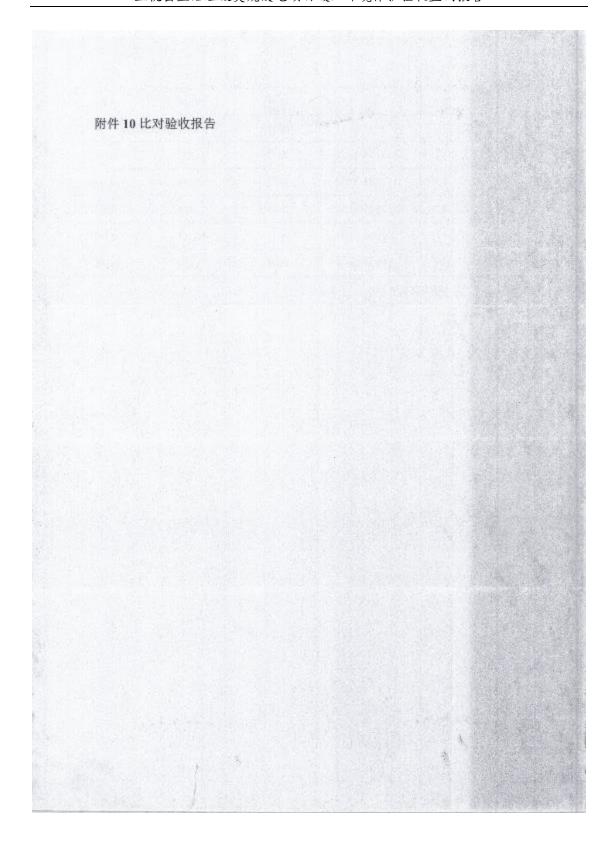
附件7参比方法评估流速 CMS 准确度

附表7参比方法评估流速 CMS 准确度

D.W.	方法					测定次数					日平均
日期	力压	1	2	3	4	5	6	7	8	9	値
2024,02.02	参比 方法	11.96	13.44	11.67	11.75	11.75	11.74	11.73	11.66	11.74	11.9
2024,02,02	CMS	12.516	12.430	12.319	12.270	12.209	12.155	12,414	12.732	12.768	12.4
绝对设	差(m/s)		0.50		相	付误差 (9	6)		4.20	

附件 8 参比方法评估烟温 CMS 准确度

附表 8 参比方法评估烟温 CMS 准确度


日期	序号	时间	参比方法 A(℃)	CEMS 法 B(*C)	数据对差=B-/
	1	11:02-11:05	152.0	153,256	1.256
	2	11:07-11:10	152.9	152.856	-0.044
	3	11:10~11:13	151.3	152.580	1.280
	4	11:14~11:17	151.7	152,250	0.550
2024.02.02	5	11:19-11:22	151.9	151.924	0.024
2024.02.02	6	11:23~11:26	151.1	151.627	0.527
	7	11:27~11:30	150.8	151,390	0.590
P. W.	8	11:31-11:34	150.6	151,365	0.765
	9	11:35-11:38	151.7	151,344	-0,356
	烟温绝对	误差 (°C)	RE BUSE	-0.51	

附件9参比方法评估烟气湿度 CMS 准确度

附表9参比方法评估烟气湿度 CMS 准确度

日期	序号	,时间	参比方法 A (%)	CEMS 法B (%)	数据对差=B-A (%)
2024.02.02	1	11:02-11:05	21.09	21,417	0.327
2024.02.02	2	11:07-11:10	20.52	20,063	-0.457

3	11:10~11:13	20.03	19.684	-0.346
4	11:14~11:17	20.53	20.386	-0.144
5	11:19-11:22	20,73	21.322	0.592
6	11:23~11:26	21.33	21.138	-0.192
7	11:27-11:30	20.83	20.482	-0.348
8	11:31~11:34	20.33	20,727	0,397
9	11:35-11:38	20.46	21.038	0.578
湿度相区	对误差(%)		-0.11	

固定污染源烟气排放连续监测系统 (CEMS)验收比对监测报告

报告编号: XA-TC-20240161

委托单位: 上杭红新能源科技有限公司

受检单位: 上杭红新能源科技有限公司

样品类别: 废气

检测类别: 比对检测

报告日期: 2024年02月27日

A BEE

报告说明

- 1. 报告无本公司的检验检测专用章、装缝牵无效、报告任何形式的流改、增测、鉴用。 转让均无效。
- 2. 报告无编制人、市核人和批准人签字无效。
- 3. 未经本公司书面批准,不得部分复制检测报告。
- 4. 委托单位若对报告有异议,应于收到检测报告之日起十五日内向本公司提出。逾期未 提出异议的、视为承认检测结果。
- 5. 对客户這样的委托检测仅对米单负责,未经本公司问意,委托单位不得擅自使用检测 报告进行不当宣传。
- 6. 本公司接受的委托运检,若无特别说明,生产单位及样品的相关信息未经本公司确认。 信息的真实性由委托单位负责。

地址:中国《杨建》自由贸易试验区厦门片区《保税地区》海景路 268 号 1#楼 310-315 室

Multi www.xmadvance.com

电话: 0592-5790408

传统: 0592-5790409

月70年 361026

10 2 FL FL 27 ft

明治84号 XA-TC 20240164

检测报告

一、检测概况

1. 项目基本情况

上抗炔聚催器科技有限公司位于程建等上級基格環鐵上維持新予課錄 10 号,便上杭洪新能源科 我有限公司委托,我可于 2024 年 02 月 01 日 - 2 日推設技术人员接班相关技术威高对上较流新能源科 技有限公司的報价权选择级口 1e (PQ-303173-1) 的各线监测设备进行被收记对检测。

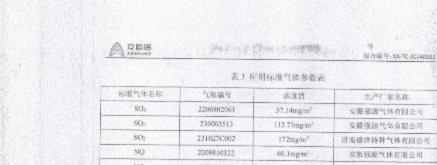
o western

上板供數能器和技有限公司機計類倒掉效(11# (FQ-303173-1)的 CEMS 基本多數模法、参比方法 基本特別及所用於每气情况是下表。

表 1 CEMS 基本参数情况表

manum .		報件用	图排放口 14(FQ-30	1175-1)	
仪器宏称	#9	出厂编号	CEMS 解试版图	生产厂家	21 St 16 St
高度	TPT-100	753P228000D	Pc100/电容。 地区疾		0-400°C
张进	1171-100		集社管		B-46m/s
18/0			深度极限电流法		0-40%
二氧化硫			等在叶变换红外 光谱法	聚光科技	0-200mg/m
被氧化物	FT-100	473F2350002	解立时受换红外 光谱法	(杭州) 取俗有一 聚合市	0-250mg/m
一氧化碳			制立叶变类红外 光谱法		9-200mpte
果民族			領立叶变换组外 允濟法		0-120mp/m
音號級	HMS-200	Y23080233	氧化物法		0-25%
\$517 IS	Synspec PM	456P2290B12	救免數針店	Synspec	0-60mp\si*

等 3 月 共 27 月



报告编号, XA-TC-20240161

表 2 参比方法基本参数情况表

经证券税	68066	检测分泌	収替名称及 管理编号	参批方法	方法 检出限
	SESS.	要定污染设体气中取应转割 定与气态污染物果保方法 GB/T16157-1996	大阪県低盆度保主/气 勝式は3012H-D-D XA-TC-VO-139	皮托骨肤	
	202	固定污染器材气中颗粒物温 定均气表污染物浆样方法 GB/T16157-1996	大约量信息度報公代 報记位 2012H-D-D XA-TC-YQ-139	热电阀接	1
	an	固定污染液体气中颗粒物料 定与气态污染物果样方法 GBT 16157-1996	大波遊低液度傷犯/气 測试仅 2012H-D-D XA-TC-YO-139	下資本法	-7
	含氧量	変定污染溶体气中侧线物质 定与气态污染物采样方法 GB-T16157-1996	大海着低浓度绿生气 测试在 3012H-D-D XA-TC-YQ-139	电化学法	1
授气	二氧化丙	固定污染維度气 二氧化硫 的测定 定电位电源法 HJ 57-2017	人约量省床度相位/气 制试位 3012H-D-D XA-TC-YO-119	定电价 电解法	3mg/m²
	集異化物	固定的距離废气 复氧化物 的测定 定电位电解法 由3 693-2014	大水最低浓度增生/气 消试仪 3012H-D-D XA-TC-YQ-139	電电位 电解法	3mg/m ³
	-W.(CM)	固定污染器速气 一氧化键 物固定 定电位电解法 印 973-2018	大海量包括度每4.5气 高三位 3012H-D-D XA-TC-YQ-139	定电位 电解法	3mg/m²
	低浓度幅 程物	国定污染源校气 化亲皮粒 特物的资定 重量法 HJR36-2017	+ 万分之一天平 XA-TC-YQ-067 恒温回滑手功修業系統 XA-TC-YQ-140	观集法	impin'
	XRX	定污染液液气 氧化氢的消 定 斯黎银彩显达 HJ 548-2016	25,60ml 你也和世家证证 XA-TC-YQ-065-26	容量法	4.3mg/m

雨 4 瓦 共 27 页

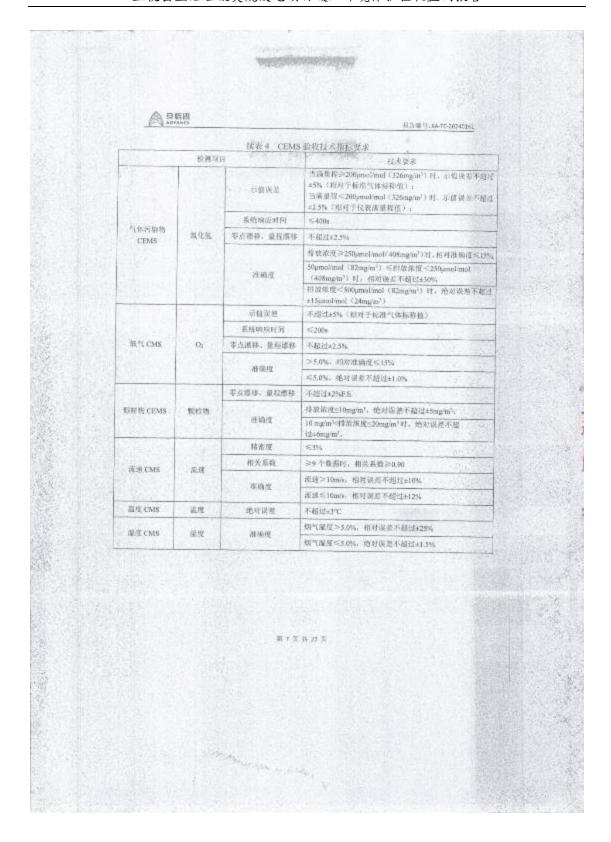
STATE FOR STATE	Cardin 2	PROEIT.	生产厂家名称
902	2206802063	57.14mg/m ³	安徽是源气体有限公司
80;	230003513	113.71mg/m ³	支徵强锁气体有限公司
SO ₂	2310270002	172mg/m ³	济海德维特种气体有限公司
NO NO	2209810122	60.1mg/m	安徽强原气体有限公司
NO NO	203805005	125mg/m [†]	安徽到唐气体有限公司
NO	231026C171	199.6mg/m ³	逐南學洋特种气体有限公司
NO ₂	231027C274	11.29mg/m ³	济南德鲜谷种气体有限公司
NO ₂	231127C033	29.37mg/m ⁵	逐渐被浮势种气体有限公司
NO ₂	2311270055	45.4mg/m ²	济南德泽核井气体有限公司
00	1.205410189	50.4mg/m ⁴	安徽塑炼气体有限分词
co -	QW24139	110mg/m²	安徽州源气体有限公司
00	231027C012	181.3mg/m ²	济南州洋行孙气体有限公司
HCI	231129C134	70.7mg/m³	舒南德祥特种气体有限公司
HCI	231027C228	27.86mg/m ³	游离循潭時替气体有限公司
HCI	231627C227	115.7mg/m³	济南语洋特种气体有限公司
02	231027C188	6.01%	济州植产特种气体有来会司
01	1.216602172	13.5%	福建南安市成功气体有限公司
0)	2300402103	20.91%	安徽强源气体有限公司

- (1) 《匿定污染源绿气 (SO₂, NO₄, 顾释物) 排放直接检测技术规范》 (HI 75-2017)。(2) 《匿定污染源景气 (SO₂, NO₈, 颗枝物) 非度连续检测系统技术要求及检测方法》
- (HJ 76-2017):
- (3) (国定污染架体气中颗粒物测定与气态污染物类样方法)(GB/T16157-1996)。
- (4) (关于短期生活垃圾类遇发电厂自动放拉和直控执法工作的通知》(环办项法[2019]64 空附件 2. 2019.12.26)。

三、调试检测技术指标

本次周式检测技术的标报后(医定污染通热气(SO₁、NO₆、解检查)非核造体投票技术模范2(2017年2-2017)中表 A.3、《关于加重生后均通骨烧发电厂会动脉疾转控和核生工作的通知》(环办核 定(2019)64 号别年 2、2019,12,26)要求设置为 SO₂、NO₆、CO。形C、氧气 CMS、额种等 CEMS,该 图 CMS、高度 CMS、温度 CMS 十个多数。形象并有要求详见如于表 4、

MSESTIMA



提供编号: XA-TC-2204015

沒 4 CEMS 验收拉术指标基束

拉斯	中市	1	在 4 CEMS 犯权技术指标要求 技术要求
		示智误差	当消量程≥100µmolmsi(286mg/m²)时,示如果原不超过45%(用对下标准气体机等和 当演量程<100µmolmsi(286mg/m²)时,压值误差不超过45%(相对下标准的量对解
		系统响应时间	≤200x
	無	孝点原移、臺 投源移	不超过±2.5%
	18:		标版张度≥250µmol/mol (7(5mg/m²) 时,相对准确度≤15%
	en	用真灰	50,amol/moi (143mg/m²) 5計版限度
			Mymol/mol (37mg/m*) <非技術度<50µmol/mol (143mg/m*) 可、相対決定不証法と30
			排放浓度 < 20 μand inci (57 mg/m²) 村、绝对误差不定过±5 μmul/mol (17 mg/m²)
έų		示值误差	当演量程》2004mobinel(410mg/m²;例,示值摄整个超过4%(相对下标准性基本接值 当满量得《2004mobinel(410mg/m²)时,示值误差于超过42.5%(相对下位表的复数集)
OR.		系统有应时间	≤200s
中中	% K	写点指标、量 程谱移	不测过=2.5%
to c	化		推收浓度≥250µmot/met (513mgm*) 间,根对据规度≤15%
E	18	78.19.19	S0pmol/mol (103mg/m²) <非依款度<150pmol/mol (513mg/m²) 19、维对误是不相由 ±20pmol/mol (41mg/m²)
S	120		20µmol/mol (4)mg/m²) ≤排放液度<50µmol/mol (1(Omg)n²) 时,组对误差不超出±30%
-			持後途度<20pmol/mol (41mg/m²) 对,绝对资差不能过zfpmol/mol (12mg/m²)
		矛值误差	灣議報号≥200µmobinai(290mpin²)時,亦情景要不翻次≤%(相对于标准气体包含值 透過量器<200µmobinoi(250mgin²)時、幸值景集不過过減5%(約累于收表演量程行)。
	72	系统构版时间	≤2004
	N	写点等待、量 和课移	不修过+2.5%
	化		排放浓度≥250pmol/mol (313mpm ²) 时,相对准确度≤15%
	80	NF 100 CE	50pmol/mai(65mg/m²)< 6.66次度(250ptool/mai(313mg/m²)は、作材良恵年提出 =20pmol/mai(25mg/m²)
			20µmol/mol (25mg/m²) <特於浓度<50µmol/mul (63mg/m²) (4、相可采集不提出的III)
			将版像度 <nymol (25mg="" (8mg="" mol="" m²)="" m²)<="" td="" 所,您对英说不超过+6pmol=""></nymol>

到8月末27月

投資報告
接入1 接触物でEMS 等点和量程源移检測 おぼ人め、工 松、臣少等 (FMS 生き) (FMS 単年) (FMS 世年) (FMS TEACH)
対域
選択性
##決ト報: 報告報文目19 (FQ-332[73-1) CEMS 29年
計畫並位 (mg/m²) 10:24 20:24,02.02 20:24,02.02 59:3 60 0.2 10:29 22:30 0.078 0.102 0.024 是程課移並可支益整大位 (mg/m²) 0.2 要点課移地可误差最大位 (mg/m²) 0.02 是程課移並可支益整大位 (mg/m²) 0.2 要点課移 (%) 0.01 是程課移並可支益整大位 (mg/m²) 0.2 要点課移 (%) 0.03 是程課移並可支益整大位 (mg/m²) 0.2 要点课移 (%) 0.03 是表证移 (mg/m²) 0.2 是表证移证可支益整定的 (mg/m²) 0.2 是表证移证可支益整定的 (mg/m²) 0.2 是表证格证可支益整定的 (mg/m²) 0.2 是表证格证可支益整定的 (mg/m²) 0.2 是表证格证可支益 (mg/m²) 0.2 是表证格证可支益 (mg/m²) 2.0
対対
対抗 対抗 対抗 対抗 対抗 対抗 対抗 対抗
(2a) (2b) (2b) (2b) (2c) (2c)
10.41 22.17 22
である。
表 5.2 参比方法校権業較物 CEMS 第ば人前、注意生 CEMS 生产厂前、 Sinares 形式前点: 上社訂額基額科技業組会司 CEMS 集号: Synapes PM 訓試位置: 操が視点建設日 14 (FO-303179-1) CEMS 原因: 石放放法 参比方法状器モデ厂命: 漫を新収費(上海) 有限会司 現号: 場号・ 3012H-D-D、XA-TC-YO-179 単母: 産産法 「日期 対印 F 保料头偏号 解析物度 料干体料 液生 原定的 類色 「中 保料头偏号 (ng) (L) tng/ng ²) (ng/ng ³)
##試人前、注意生 CEMS 生デー賞、 Singres ##試売前: 上花江部北部科技室里公司 CEMS 景等: Syngpet PM ##試売前: 上花江部北部科技室里公司 CEMS 景等: Syngpet PM ##試売費: 強性処所建設口 1#(FQ-303175-1) CEMS 原理: 后数程法 ##実力法技術生产/ 前、理量折収費 (上海) 有限公司 ##等: 場場・ 3012H-D-D、XA-TC-YO-139
度 米井矢屋号 (ng) (L) (mp/n ²) (mg/m ²)
14:18-14:51 1 12401137 0.67 1075.0 ND 1.408 上色
14:54-15:36 2 12401180 0.28 1003.7 ND 1.268 光色
2024.02.02 [5:31-16:06 3 12401105 0.33 [0:7.6 ND 1.26] Z.E.
16:11~16:47 4 12401057 0.47 1004.1 ND 1.563 £.51
16:54-16:29 5 12401058 0.30 1075.6 ND L466 U.S.
他对灵差 (mg/m ²) 0.9

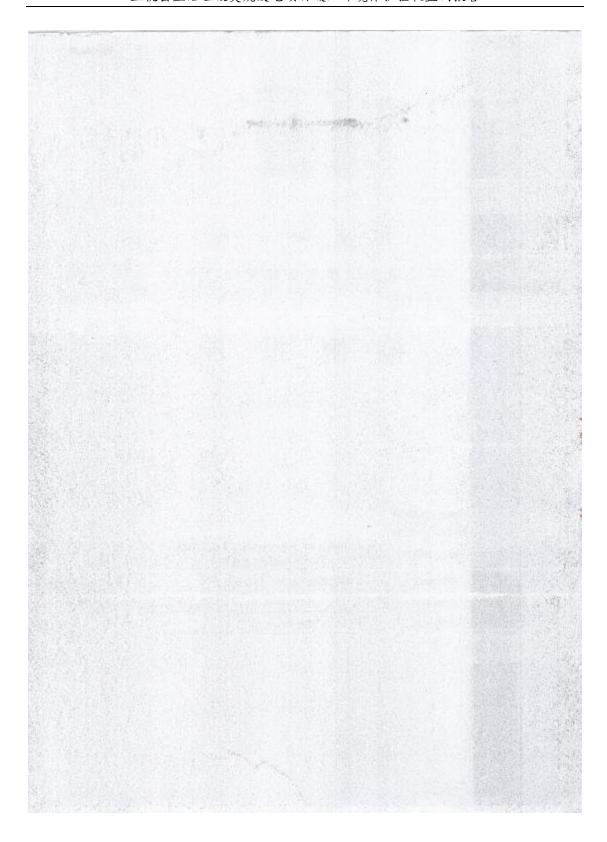
据试人员: 主 推试这方: 上这 测试位置: <u>例</u> 必	松。除水		染物 (二氧)		-			C-302401E4	
据试人员: 主 推试这方: 上这 测试位置: <u>例</u> 必	松。除水		染物 (二氧	PER CEA					
推试线点: 上线 测试位置: <u>供</u> 价		196		LOSE / CEN	IS等点和复	社 程源移布	36		
神风位置,<u>纯</u>应		Although		CEMS	EFFR. S	法担抗 ()	X211.7 REE	有限公司	
					2015	THE PARTY OF THE PARTY.			
标准气体浓度减			30-303173-1) KNAL 172mg		原理: _便立			na'm'	
	PARTIES TO	星年位(1100000	1.00 Cmg		
HM	86	: 後数	委点课移绝	1	ing .	9.07	设数	是我等存储	
开始 华東	25(f) (Zc)	能练 (Z,)	対認施 AZ=Z _F Z ₃	开始	15%	#6% (Sc)	形特 (S _i)	对张报 △S=S-S ₁	备往
3024.02.02 2024.02.02 68:39 . 22:57	0	0	0	2024.02.02 09:44	2024.02.02 23:27		168.617	-4,700	
零点漂移绝对误差段	大併(mg	Only	0	旅程率	移作对决定和	b大镇(mg	rett (ter	4,700	
學系微學(96.1		0		是程道核	(%)		-0.24	1
标准气体浓度或		量单位 7				2000	# fz (mg	0723000000	
村田	1500	法数	等点排移的 对误差	19	判	景程读数	量程原移的 对误差		
开始 结束	放(計 (Z ₀)	最终 (Z ₄)	∆Z+Z+Ze	开始	林林	起始 (Sa)	銀幣 (S)	$\triangle S = S_1 \cdot S_0.$	各法
2024.02.02 2024.02.02 08:59 55:57	0	n-	0	2024.02.02 09:12	2024.02.02 23:07	200,542	195.723	-4:817	
零点零售绝对误差最为	cili (mg	(m)	0	量程度	多绝对误差是	大使 (ing	m ¹	4.817	
等AMB (167		0		数据条件	(%)	1 20	-2.09	
			N o	医共27百					

J	自然經						- 18	2 No. 15 x x 1	7C-20240161	
		表 5.5	代布行	染物 (二氟	化氮)CES	MS 零点和f	比程源 移补	A-201		
91	武人员: 王					生产厂市。			电公规 许分	
31	Ritter <u>Fr</u>	CLERKS	科技有	R公司	CEMS	\$(0):	FT-100			
				FQ-303173-1)		程型: <u>维力</u>				
- 60	OF THE STATE OF			(19) 佐 - 45.4m	19 M	物名称: 二包				
1	H) (ii)		1000000	(mgm ³)	1	MU		B単位 /a	Example	
		起始	X 淡鏡 最終	対误整		TIPS N		12.15	划误似	
开始	禁邪	(Zol	(Z _i)	1.2-2-21	开始	杨束	(8)	最終 (8)	∆S=S-S	åit
2024.02.02 08:59	2024.02.02 22:59	0	0	0	2024.02.02 10:12	2024.02.02 23:44	48,45	43;4	-5.05	
學点源	多地对误差量	大億 (mg	g/m³)	0	9.1276	移绝对强能最	A大位(mg	rm')	5.05	
	等点原称(%)				193	量程序体(%)			.2.20	
3% i	《人员· <u>丁</u> 《他也·上标》 《他说· 张	表 5.6 公。至少 江斯德地 国家科拉	MELNE MELNE LI IV (R	0-303172-17	CEMS CEMS	IS 琴点和量 1:m/T-6; 表 12号;	程課移檢 光升改 (お FT-100	(州) 股份 北海法		
3% i	《人员· <u>丁</u> 《他也·上标》 《他说· 张	表 5.6 位、第少 订货资度 可贷价度 受准 转件	版 科技有限 以 10 (Fi 的已知時	発物 (一架4 公司 (9-309172-1) 内部, 131.3a	CEMS CEMS	IS 琴点和量 1:m/T-6; 表 12号;	程導移檢	光海法 是単位。」	·有量公司	
2016 2016 2028	《人员· <u>丁</u> 《他也·上标》 《他说· 张	表 5.6 位、第分 位斯能激 经准龄件 设准龄件	MELNE MELNE LI IV (R	染物(一似4 公司 (2-303172-1) (内望,131.32 (132-12) (1	CEMS CEMS	IS 琴点和量 1:m/T-6; 表 12号;	程導移檢	光谱法 光谱法 量单位: j	·查量公司 1度m [*] 監控課務會	
2016 2016 2028	《人员·王二 《他点·上信· 《他置· 私 的》 《气体常度域》	表 5.6 位、第少 订货应通 经准备件 计门 等点	度 料放有数 以 19 (F) 的已知收 此章程() 读数	杂物(一架 和 (-) (20172-1) (方質、(81.3c) (方質、(81.3c)	CEMS CEMS	IS 琴点和量 1:m/7章,展 12号, 山母, (香空) 名章: 一直(6	程導移檢 注升技(4 FT-100 中党美紅外 公数 计 计量 管理 起始	光谱法 显单位: 单位(m 发数	·查量公司 mgm² gm²) 整控調整維 对決型	\$40
atio atio atio	水人员,正 1 花隐也,上租 花像也,从此时 水气体和玻璃,	表 5.6 公、第少 订货递递 经条件放 交准 转件 计目 等次	版 料度有限 以 1 4 (Fi 的已知收 此年起 ()	条物 (一気化 公司 (5-303172-1) 応報 (31-3c (32-3c) (31-3c) (3	CEMS CEMS CEMS TEMS	IS 零点和量 1: 10 / 20 / 20 / 20 / 20 / 20 / 20 / 20 /	程導移檢 光月技(社 FT-100 叶安美紅叶 公庭 计 计量	光過法 量単位: 」 単位(m	·查量公司 1度m [*] 監控課務會	
######################################	《人族、正 1 《他也: 上班 《他说: 我必定 《一年》 《 2024.02.02	表 5.6 公、第分 计新磁速 医液性放 交准 静件 计	能 料度有限 以 14 (內 的 己知的 此章 位 () 读数 是章 位 ()	発物 (一気を (-303172-1) 内部 (31.3c) 取g/m ²) 事及準移台 対定差 △ZーZ-Z-Ze	CEMS : CEMS : CEMS : CEMS : 下降机	IS 零点和量 4. (**/***) 章。 聚 12 号。 同母: <u>核立</u> : (**)	程導移檢 2月-100 中交換的外 之級 日 中華 董母 (5s) (83.858	光道法 量单位: j 单位 (m 发数 (S)	*空景公司 phr ¹ ; 監控課移維 対決型 △S~S-S:	基位
######################################	大人族: <u>1</u> 1 大阪会: 上祖 大阪会: 上祖 大阪の東: <u>株</u> 会 大阪本産成立 何 	表 5.6 区、第分 I 拆除液 医液性放 交准 静作 I I I 平点 CZu CZu C C C C C C C C C C C C C C C C	能 料度有限 以 14 (內 的 己知的 此章 位 () 读数 是章 位 ()	条物 (一気化 公司 (5-303[72-1]) (6望、[3] 32 (72-2)	CEMS : CEMS : CEMS : CEMS : 下降机	18 零点和量 18 平点和量 18 四, 18 日 19 日 10 日 2024-02-02 23-22	程導移檢 走升改(和 FT-100 中空與紅外 企級 日 中理 能理 (Se) 183.858 大情(mg)	光道法 量单位: j 单位 (m 发数 (S)	2年最公司 pm*7 監控課券件 対決監 △3~8~5。	基位

1	A DEED			Manager 6	Chare, and	9,000		· · · · · · · · · · · · · · · · · · ·	TC 20240161	
		歩 4.7	4本	· 美物(氯化	(E) CEN	e Michigan	NO.	N. I.S. C. A.		
at	武人员。王					生产厂商。是			有關公司	
28	dika: Lh	拉斯维洛	STEATER	Lan		数号				
				0-303173-1)		短胞, 奥尔				
- 14	生气体浓度或			200 117.25	ng/m² /5/0	物名称。加州	1000000	23-14		
1	trii.	-	计量单位(mgin') 等点能数 等点器移矩		10199		计整单位 (mg		gm ⁽⁾ 最故能移発	
	1 1			对误能			1 122	误数	对误划	
开始	结束	起始 (Zió	股件 (Z)	△Z≈ Z-Z ₁	开始	6598	(So)	(S)	△S= \$.8 ₆	各部
2024,02,02 08:59	2024,02,02 22:59	0	0	0	2024.02.02 10:03	2024.02.02 23:36	135.242	116.083	0.841	1
李点源	学 绝对误差最	大郎 (mg	g/m²7	0	景程等	移植对视光谱	大作 img	(107)	0.841	
	李点统符:	(%)		0		量程高移	(%)		0.70	
291 291		於、接少 四新能調 個度指放	ELECTRICAL CONTRACTOR	0-303173-12	CEMS (1.07 所。 <u>张</u> 15号。 原用。	光彩技 (6) HMS-20 現化學)	(#12 15 fb 0 8		
291 291	(坦点: <u>上机</u> (位置: 强定)	股、防少 四新途遭 類席担故 校推替作	ELECTRICAL CONTRACTOR	公司 0-303(73-1) 四位: _20.91	CEMS (1.07 所。 <u>张</u> 15号。 原用。	光报技 (6) IIMS-20 現化學) (91限	(#12 15 fb 0 8	_5	
996 996 667	(坦点: <u>上机</u> (位置: 强定)	股、除少 四新途遭 類原担故 校准時件 計	题 對技有限 DIV(F 的已知明	公司 Q-303(75-1) 回植: 20.91 mp ^{(n)*})	CEMS ! CEMS ! CEMS !	1.07 所。 <u>张</u> 15号。 原用。	光报技 (6) IIMS-20 現化學) (91限	(株) 既位 () () () () () () () () () () () () ()		
996 996 667	《地点, <u>上热</u> 《位置:遍述》 E气体浓度或	9、移业 四新途遭 惧席担故 校推替件 计 章 章	型 到或有四 口 14 (F 的已加明 是单位 (读数 最終	公司 0-303(73-1) (#祖: _20,9) mg/m²)	CEMS ! CEMS ! CEMS !	上产厂商。 <u>发</u> 世号。 東周。 5名等:	光经校 (8)(MS-20 學化學) (第(量)十里 章程 對始	(株) (統)	_%p(m^2)	養恤
996 996 667 Pi	《知点、 <u>上杭</u> 《位置:强使 注气传统恒或	股、接少 红新能源 假原把放 校准辞件 计 等点	型 科技有型 CDIM (F 的已知明 是単位(依数	金司 0-303173-1) 即值: 20.91 mg/m ²) 零点環移館 封误差	CEMS (CEMS) CEMS (CEMS) 5. 15 951 PM PM 3024-02-02	上产厂商。整 世等、 專用: 0名符: _ 含 注例 结束 2024.02.02	光彩校 (8 HMS-20 現化協) 原服 計量	(州) 版份 () () () () () () () () () () () () ()	50 pm ²) 量程課移他 对误差	善性
##i ##i ##i ##i ##i ##i ##i ##i	《坦乌·上杭 《位曹·吳佐 上气体旅程或 · · · · · · · · · · · · · · · · · ·	股、除少 红新陈遵 银度担故 校准等件 计 章 点 的 (Zi)	型 <u>到或有型</u> (114 (F 的已知明 量单位 (後数 (Zi) (Zi)	会司 Q-303175-11 回信: 20.91 mg/st ²) 写点課務能 対误差 △Z= Z _P Z ₃	CEMS 1 CEMS 1 CEMS 15 PS	上产厂程。整 世传、 東周: 50名称: 3	土 株技 (4)	無) 協会 (株) 協会 (株) 協会 (大量単位 (mg (株) (株) (株) (株) (株) (株) (株) (株) (株) (株) (株) (株) (株) (株) (大量単位 (mg) (大量 (大是 (大量 (大是 (大 () () () () () () () ()		各位
##i ##i ##i ##i ##i ##i ##i ##i	《短点·上热 似位置:强使 上气体缺度或 注词	份、除少 新能理 翻磨抽放 校推踏件 计 零点 起始 (Zo) 0.06	型 <u>到或有型</u> (114 (F 的已知明 量单位 (後数 (Zi) (Zi)	公司 Q-303(73-1) 即位: 20.91 mg/m ²) 平力課務他 対関連 △Z=Z ₁ Z ₃ 0.056 0.056	CEMS 1 CEMS 1 CEMS 15 PS	上产厂院。整 担号。 享期: 5名等。 含 (2024,02,03 22,46	光経校 (利 IEMS-20 現化等) (京原 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	無) 協会 (株) 協会 (株) 協会 (大量単位 (mg (株) (株) (株) (株) (株) (株) (株) (株) (株) (株) (株) (株) (株) (株) (大量単位 (mg) (大量 (大是 (大量 (大是 (大 () () () () () () () ()	_% pm³) 量程課移他 对误能 △S= S _P S ₁	各位

	ASS	H.					FRIGHT NATO 20	Canasa
						will be		
				と確)CEMS	示值误差和	印系统响应	时间检测	
	相忧人员: 土	位。 清少期		CEM	8 生产厂商:	RANK	机州)权公司	H29
	据试准点: 上	去红纸使调料	日本理会司	CEM	S 2050;	FF-100		
			1# (FQ-30317			立叶安族红		149
						TOTAL CO.	N. A. W. C.	
		二氢化烷		- 计数	bear mean			
	素保村田) _	2024 4 02	_/1_01_H					
序年	标准气体影	CEMS SETS	CEMS Elia:	不能以把		系统机	应时间(8)	
行生	多值	10	由海平均位	(%)	10	Men		中共
1	-	174.133			TI	T2	T=T1+T2	1
2	172.3	179.675	171775	-0.28	41	82	123	
1		170.441	121.00	19.25	39 41	81	120	12
4		114,467			40	76	122	-
. 5	113.71	115,975	114.4	0.34	41	78	119	11
6		112.758	1.000		39	74	113	12
7		57.6			41.	75	116	
- 8	57.14	57.483	57.864	0.36	42	- 37	119	- 11
					40	75	112	
9		58.508			25	72		-
	務試人员,王 例故地点,上述 務式位置。 <u>核</u> 行处物名称。	5.10 气态的 松、基少星 近年新建築計 (2位新建築計 (2位新建築計 (2位 (2位 (2位 (2位 (2位 (2位 (2位 (2位 (2位 (2位	技術組合可 (#10-303)73	CEMS CEMS	示値保護者 生产(「商」 見号:	D 系统响应》 承光科技 (J FT-100 立列支持红色	才何检测 以州) 班伯利斯	(公里
	则试人员。王 别试电点。上述 游试位置。 <u>恢</u> 符处物名称。 则试订词。	5.10 气态污 松、光少星 双生寒能率折针 2.低生排放口 一里化复 024 年 02	技術組合可 (#10-303)73	CEMS CEMS	示値保養者 生产厂(6) 見号:	D 系统响应》 量光科技() 下T-100 立列支持红色	才而检测 以出)检查有质	公 担
	则以大员、 <u>工</u> 则依电点、 <u>上;</u> 游戏位置。 <u>热;</u> 污染物名称。 则以订完。2 形准性体参	6. 地少程 松、地少程 出生新能率标言 2.地连译故口 - 里化製 024 年 02 CEMS	技有限公司 te (FO-303173 用 <u>01</u> 用 CEMS 提供	CEMS CEMS L) CEMS 中華年	示値保養者 生产厂(6) 見号:	D系统响应3 聚光科技 () 77-100 立叶支持红点	才何检测 以州) 班伯利斯	(会国
•	则试人员。王 别试电点。上述 游试位置。 <u>恢</u> 符处物名称。 则试订词。	5.10 气态污 松、光少星 双生寒能率折针 2.低生排放口 一里化复 024 年 02	技有限公司 ie (FO-303)73 .月 <u>.</u> 日.日	CEMS CEMS L) CEMS	下值误款系生产厂由: 型号: 	D系统构版》 图光科技() PT-100 立叶支持红色 系统构版 高定值	才開檢網 成州) 原命有數 小类遺法	
•	则以大员、 <u>工</u> 则依电点、 <u>上;</u> 游戏位置。 <u>热;</u> 污染物名称。 则以订完。2 形准性体参	6. 地少程 松、地少程 出生新能率标言 2.地连译故口 - 里化製 024 年 02 CEMS	技有限公司 te (FO-303173 用 <u>01</u> 用 CEMS 提供	CEMS CEMS L) CEMS 中華年	示値保養者 生产厂(6) 見号:	D系统响应3 聚光科技 () 77-100 立叶支持红点	が何後側 3.2円 2億分利数 少支遺法 10寸円 (s) 17寸1-12	
申 申号 1 2	则以大员、 <u>工</u> 则依电点、 <u>上;</u> 游戏位置。 <u>热;</u> 污染物名称。 则以订完。2 形准性体参	5.10 气态的 检、高少型 201度度率经过 户级支持效口 三氧化氢 0024 年 02 CEMS 显示值	技有限公司 te (FO-303173 用 <u>01</u> 用 CEMS 提供	CEMS CEMS L) CEMS 中華年	不值误差系 生产厂品; 見号: 里母: 数 粒: 四gm'	D系统响应日 素定科技() 下T-100 立生支持在今 系统和6 而定值 172	才開檢網 成州) 原命有數 小类遺法	410
中号 1 2 5	测试人员, 五 测试电点, 上线 测试电影, 选择 传染物名称。 测试时间,2 彩准气体彩 专催	5.10 气态的 松、苯少尼 这些新能源特别 P.快速注放口 一层化键 024 年 02 CHMS 显示集 202.317 202.475 202.975	支在集会司 # (FO-303173 月 <u>01</u> 日 C6b8s 建东 值得干均值	CEMS CHMS CHMS 中值年	示値误差系 生产では、 見号、 単心、 型 粒、 四g·m ³	東京村 (京) 東京 (東京 (東京 (東京 (東京 (東京 (東京 (東京 (東京 (東京	才同检测 以出 200 有版 之进法 201 可 (a) 10-11-12 92	410
9 月明 1 2 5	期試人员, 王, 割试地点, 上; 测试地点, 上; 测试过管, 选; 污染物名称。 测试过河,2 标准型体验 专催	5.10 气态的 松、苯少尼 以白新能維持 P.供来注於口 一氧化铽 2024 年 02 CEMS 显示值 202.3/7 202.475 202.975 123.983	支布組合司 (# CFO-393173 月 <u>旬</u> 日 CEMS 連杯 値様干均値 202.589	CEMS CHMS CHMS 中值年	下値误差8 生产「日: 見号: 単心: 対 だ: mgm [*]	申系統明度等 業定科技 () 下7-100 立り支持在点 第単的 高定値 73 64	才同校側 以出)独会有数 (以明 (s) 17-171-12 92 91	41/2
平号 1 2 3 4 5	测试人员, 五 测试电点, 上线 测试电影, 选择 传染物名称。 测试时间,2 彩准气体彩 专催	5.10 气态行 松、苯少尼 以白新能矩杆 P研末排放口 - 医化包 2024 年 02 CHMS 超示值 202.3/7 202.475 202.975 123.983 125.225	支在集会司 # (FO-303173 月 <u>01</u> 日 C6b8s 建东 值得干均值	CEMS CHMS CHMS 中值年	下值误差和 生产厂间; 型号: 型号: 型型: 型 拉: mgm [*] T1 19 21 29	申募続哨(原) 東京科技 () ドア-100 立り 支持打 か 単述率16 市定員 12 73 64 65	が同校側 以出)協会有限 (2世間 (a) 2世間 12 92 91 94	=1 ₀ 1
甲号 1 2 3 4 5	期試人员, 王, 割试地点, 上; 测试地点, 上; 测试过管, 选; 污染物名称。 测试过河,2 标准型体验 专催	5.10 气态的 他、光少型 近年等级日 三年代组 024 年 02 CEMS 显示值 202.317 202.475 202.975 123.963 125.225 123.958	支布組合司 (# CFO-393173 月 <u>旬</u> 日 CEMS 連杯 値様干均値 202.589	CEMS CEMS CEMS T 使有	下值误差和 生产厂间; 型号: 型号: 数 粒: ngm' T1 19 23 29 21	P 系统响应的	が何枚側 以出」原金有数 企造法 (以可 (a) 12-11-12 92 93 94 88	(公司 中Jb) 93 93
事号 1 2 3 4 5 6	期試人员, 王 前试地点, 上 消试地点, 上 消试也靠, 选 行头的名称。 利达时间,2 形在气体器 专催 200.9	5.10 气态的 松、苯少型 医机器能测针 产性连续设计 工化组 024 年 02 C型MS 超示值 202.317 202.475 202.975 123.983 125.225 123.958 67.658	e (FO-393173 H 01 日 CEMS 建汞 位标平均位 292,589	CEMS CHMS CHMS 中華年 (%)	下値保護者 生产「6: 見号: 見	中級統両原列 東北利技 () ドア-100 立。を終れる 東統和() 東京領 12 73 64 65 67 69	が何枚側 (3円) 原金有数 (2円) (a) T=T1-T2 92 91 94 88 96	=1 ₀ 1
甲号 1 2 3 4 5	期試人员, 王, 割试地点, 上; 测试地点, 上; 测试过管, 选; 污染物名称。 测试过河,2 标准型体验 专催	5.10 气态的 他、光少型 近年等级日 三年代组 024 年 02 CEMS 显示值 202.317 202.475 202.975 123.963 125.225 123.958	支布組合司 (# CFO-393173 月 <u>旬</u> 日 CEMS 連杯 値様干均値 202.589	CEMS CEMS CEMS T 使有	下值误差和 生产厂品: 型号: 型码: 数 拉: mgm ² T1 19 21 29 21 27 26	東京科技 () 下7-100 立9 支持数 () 原統和(5 高定額 12 73 63 65 67 69 70	対向機測 3.H.1 総会有数 少定遺法 (B) 同 (a) T=T1-T2 92 91 94 98 98	=1 ₀ 1

N 12 JT JT 27 K


							MINITO XATOO	2342 HeT
		E 5.11 本(表	行集物 (二氧		示值误差	和系统响应	4	
	Michigan L	- RECORDING	4技有製公司					ezeq.
			11# (FO.3017	FIT CEN	as with 1	是正計及機能	外光谱法	
		二世代版		- 計脈	OO: mg'm	,		
2	为议时间:	2024 F 0	2 /1 01 11					
37-10	形准气体参	CEMS	CEMS 基质	示值误差		系统有	庭村所(4)	177
12.0	900	是运信	值得平均值	(%)	-	高定位		平均
1		46,008	100		41	T2	T=T1+T2	- 0
2	47.23	45,575	46.025	-0.52	36	60	111	109
1	1000	46.492			40	71	113	
1	A CONTRACTOR OF THE PARTY OF TH	29.692	-	The same of	38	67	105	100
4	200,000	29.067	29.353	-0.01	36	71	100	100
. 5	29.37	20.2		79,00		-	107	000
market from	29.37	29.3		3407	41	70	111	- 10
5	2937	29.3 11.65 11.3	11.358	0.03	41 38	70 69	111	EUN)
5 6 7	11.29 表 無試入员: 王 形试电点: 上	11.65 17.3 11.125 5.12 气态设 松、陈少宏	11.358 亏染物 (製点 技有股公司	9.03 と機)CEMS CEMS	41 38 42 44 承值误差利 (全产) 商。	70 69 71 76 0系统响应 张光科拉(FT-100	111 107 113 120 时间检测 抗州2 经设有层	m
5 6 7 8	11.29 表 無試入员: 王 形试电点: 上	11.65 17.3 11.125 5.12 气态; 松、陈少宏 经红套电磁料 经供购债效口	11.35% 写築物(一氧4 技有股公司 18 (PO-305173	9.03 CEMS CEMS CEMS	41 38 42 44 承值误差利 (全产) 商。	70 69 71 76 0系统响应 张光科拉《 FT-100 立计变类红	111 107 113 120 时间检测 抗州2 经设有层	m
5 6 7 8 9	表 務成人员: 三 務成化度: 上 設試位置: 施 污染物名称:	11.65 17.3 11.125 5.12 气态; 松、陈少宏 经红套电磁料 经供购债效口	11.35% 写築物(一氧4 技有股公司 18 (PO-305173	9.03 CEMS CEMS CEMS	41 38 42 44 永值误差彩 (全产厂商。 (5等): (5等): (5等):	70 69 71 76 印系统响应 聚光母位(FT-100 介计变换红	111 107 113 120 时间检测 抗州2 经设有层	m
5 6 7 8	表 無減人员: 正 無減人員: 上 無減位置: 上 減減位置: 施 河及物名称: 無減的質:	11.65 17.3 11.125 5.12 气态3 松、除少型 松红菱形破形 珍珠肉珠坡口 一氧化碗 2024 年 02	11.35% 亏棄物 (一報(致有較公司 10 (20)-303173	5.03 CEMS CEMS CEMS CEMS CEMS	41 38 42 44 45 (金产厂商, (金产厂商, 5 類号, (金产厂商,	70 59 71 76 76 0系统响应 张光科位: FT-100 5 计变电台:	111 107 115 120 时间检测 松州3 经分有图	m
5 6 7 8 9	表 養成人员: 三 無成人员: 三 無成他直: 上 近ば位置: 極 河及物名称: 無対何何: 「存在可含于 「存在可含于	11.65 17.3 11.125 5.12 气态; 松、陈少宏 松红菱形破形 沙性肉体放口 一氧化磁 2024 年 62 CEMS	11358 写築物(一氧化 技有販公司 16 (20-303173 月 01 年 CEMS 显示	0.03 と暖)CEMS CEMS CEMS CEMS TO CEMS TO CEMS TO CEMS TO CEMS	41 38 42 44 5全产厂商。 5全产厂商。 5至户厂商。 5至户厂商。 71	70 59 71 71 71 71 71 71 第第轉版 聚於科拉(FT-100 介计查集社) 系統聯放 系統聯放 71 71 71 71 71 71 71 71 71 71	111 107 115 120 时间检测 标件3 经分有图	102
5 6 7 8 9	表 養成人员: 三 無成人员: 三 無成他直: 上 近ば位置: 極 河及物名称: 無対何何: 「存在可含于 「存在可含于	11.65 17.3 11.125 5.12 气态: 核、除少数 核红菱能被形 设在的情故口 一氧化板 2024 年 02 CEMS 从不相	11358 写築物(一氧化 技有販公司 16 (20-303173 月 01 年 CEMS 显示	0.03 と暖)CEMS CEMS CEMS CEMS TO CEMS TO CEMS TO CEMS TO CEMS	41 38 42 44 45 (金产厂商, (金产厂商, 5 類号, (金产厂商,	70 59 71 76 76 0系统响应 张光科位: FT-100 介计查电台:	111 107 115 120 时间检测 松州3 经分有图	102
5 6 7 8 9 9 9 11 1 2 3 3	表 無減人员: 三 無減化度: 上 減減化度: 極 用強物名称: 用減可流; 一 标准气体器 考值	11.65 17.3 11.125 5.12 气态; 松、陈少宏 经订算能源程 2024 年 02 CEMS 从示值 184.392 185.742 184.458	11.35% 写築物 (一氧化 技有股公司 16 (170.303173 月 01 三 CEMS 显示	5,03 と硬)CEMS CEMS _ CEMS - CEMS - 计量句	41 38 42 44 不確误差利 5 至户「商。 8 型号。 8 型号。 17 10 10 11 40	70 69 71 71 73 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	111 107 113 120 时间检测 於光谱法 定时间(s) 1~T1~T2 91	(1) (公司
5 6 7 8 9 9 9 11 1 2 3 3 4	表 務試人页: 至 務試化度: 上 設試位置: 極 形量物電影: 精致时间: 标准气体影 考值	11.65 17.3 11.125 5.12 气态: 核、陈少年 核红草能源和 20位的连续口 2024 年 02 CEMS 及示物 184,392 185,742 184,438 111,633	11.35% 写樂物(一報4 技有股公司 18 (PO-305173 月 01 日 CEMS 显示 董術平均值 184.864	5.03 CEMS CEMS - CEM - CEM - 计能引 示情误差 (%)	41 38 42 44 44 45 46 46 47 48 49 40 40 40 40 40 40 40 40 40 40	70 69 71 76 0番鏡喇啦 聚光母粒 5 FT-100 方计变电红 新光信 22 31 65 72 55	111 107 115 120 时间检测 於光谱法 2时间(s) 17-T1-T2 91 101	(1) (公司 平和) (0)
5 6 7 8 9 9 9 1 1 2 3 3 4 5 5	表 無減人员: 三 無減化度: 上 減減化度: 極 用強物名称: 用減可流; 一 标准气体器 考值	11.65 17.3 11.125 5.12 气态:	11.35% 写築物 (一氧化 技有股公司 16 (170.303173 月 01 三 CEMS 显示	5,03 と硬)CEMS CEMS _ CEMS - CEMS - 计量句	41 38 42 44 44 46 47 48 5 整甲, 40 5 整甲, 40 16 16 17 40 36 30 30 31 31 32 33 34 35 36 36 36 36 36 36 36 36 36 36	70 69 71 76 78 38 鏡响应 聚光時位 5 FT-100 方计变电位 第定值 72 51 65 72 55 61	111 107 115 120 时间检测 抗组3 软设有图 处光谱法 2时间(8) 1=T1+T2 91 101 102 89	(1) (公司 平和) (0)
5 6 7 8 9 9 9 11 1 2 3 3 4	表 務試人页: 至 務試化度: 上 設試位置: 極 形量物電影: 精致时间: 标准气体影 考值	11.65 17.3 11.125 5.12 气态: 核. 陈少年 核.1 華 能称 位.2 在 由 持放口 一 故.化据 2024 年 62 CEMS 从.3 表示的 184.392 185.742 184.458 111.635 110.575 112.158	11.35% 写樂物(一報4 技有股公司 18 (PO-305173 月 01 日 CEMS 显示 董術平均值 184.864	5.03 CEMS CEMS - CEM - CEM - 计能引 示情误差 (%)	41 38 42 44 不值误差彩 6 空产厂商。 8 型号。 5 空产厂商。 7 百 40 36 30 31 31 41	70 69 71 71 71 71 71 71 71 71 71 71	111 107 113 120 时间检测 松州2 被没有器 公光谱法 2PT=T2 91 101 102 59 94 109	122년 学歌(08
5 6 7 8 9 9 9 1 1 2 3 4 4 5 5 6	表 務試人页: 至 務試化度: 上 設試位置: 極 形量物電影: 精致时间: 标准气体影 考值	11.65 17.3 11.125 5.12 气态:	11.35% 写樂物(一報4 技有股公司 18 (PO-305173 月 01 日 CEMS 显示 董術平均值 184.864	5.03 CEMS CEMS - CEM - CEM - 计能引 示情误差 (%)	41 38 42 44 44 46 47 48 5 整甲, 40 5 整甲, 40 16 16 17 40 36 30 30 31 31 32 33 34 35 36 36 36 36 36 36 36 36 36 36	70 69 71 76 78 38 鏡响应 聚光時位 5 FT-100 方计变电位 第定值 72 51 65 72 55 61	111 107 115 120 时间检测 抗组3 软设有图 处光谱法 2时间(8) 1=T1+T2 91 101 102 89	122년 学歌(08

11 12 1=11+12	出版有限公司 法 (*) (+)	(科技(欧州)服領 FI-100 受持兵外先遷花 系造略崇明(6)(4)	聚光科技 () FI-100 (立い交換点)	生产厂商。 生等。	CEMS	行棄物(氟化		A RE	
構成人员: 主 松 差少数 CEMS 生产厂商: 聚光科技(股班) 股份有限公司 網域内質: 共成紅蕉能素科技を複合司 CEMS 集身: FT-100 南域内質: 保护無決計及1 16 (FQ-393)73-1) CEMS 集身: 博立リ受後紅外光波法 污染物名称: 新住室 計量単位: mg/m² 連切回: 2024 年 02 月 01 日 事業権 事業権 再号 お在气体参 CEMS 最后 事業権 表表質 最高額 (%) 再業権 工1 T2 T0-11+12	出版有限公司 法 (*) (+)	(科技(欧州)服領 FI-100 受持兵外先遷花 系造略崇明(6)(4)	聚光科技 () FI-100 (立い交換点)	生产厂商。 生等。	CEMS	Lineson Februar	ers and		
対抗改点: 上攻紅魚能素的技を兼合司	注 (#2 (#2 平)	FI-100 受格红外光波法 	FI-100	\$9. <u> </u>					
南流位置: 提齢無免債故口 to (FO-303)73-1) CEMS 原料: 様立可受体紅外光波法 行業物名称: 縦住窓 計量単位: mg/m²	(s) H+12 Pi	受格尔外先液法 	立以受售点》		CEMS				
	(s) H+12 Pi	果矮鸭田田河 (sp)		· 原母: _ 技					
選述时间: <u>2024 年 62 月 61 日</u> 声号 <u> </u>	11+12 P	系统电影时间(ii)							
并立 CEMS CEMS 最后 定值现施 基度收益目标(i) 未並 最后值 (%) TI T2 TFIT+T2 可	11+12 P			Pitte mare	1190				
本性 最永恒 (%) 無定値 11 12 T=T1+12 1	11+12 P					H_01_FI	2024 F 02	Will His _	-
7 M M M M M M M M M M M M M M M M M M M	11+12	(%) 無定催				DROCK AND AND VALUE OF			19:
1 116,708 42 85 126	CONTRACTOR OF THE PARTY OF THE	T2 T=T7+T2		TI	(%)	旅得平均值	超级值	531	
2 1162 117117		83 125		42	10000		THE RESIDENCE OF STREET	1164	and the same
2 115.7 114.117 116.200 9.42 41 71 112 3 117.775 39 76 116	Attended	The second secon	_		0.42	118,200		113.1	_
4 69.483 38 60 318						Department of	The second second second	7.50	-
	121 1		-		0.65	71,489		70.7	_
6 72 025 39 74 113 7 26,375 47 78 125		The second second second second							
8 27.86 27.625 27.156 -0.50 34 76 110	transmit	The second second	-		+0.50	27.156		27.86	-
9 27,467 38 80 118	18	80 118	80	38			27.467		9
行染物名称: 食製造 : 计单单位: 55		医化物法	形式科技 1 H HMS-20 民集情報	生产厂商。] 2009。 原型。	CHMS CEMS	可樂物(含載) 14(FO-303173-	松、降少也 在在新能源和: 计划应打放口	4人的: 王 4的点: 上 4位置: <u>级</u>	3
	及任有财政司	HMS-200 氧化物法 %	単元科技 1.60 HMS-200 展集構造	生产厂商。] 2009。 原型。	CEMS CHMS L2 CEMS	2直接公司 18(FO-363173	於、降少與 在新數學生 作期後指放自 於劉潔	《入场:王 《地点:上 《位置》 <u>级</u> 《地名称: 《时间:二	3
中号 粉排气体数 CEMS 显示 CEMS 是示 示值实验 聚熟陶囱时间(s)	(8)	HMS-200 氧化铸法 '5- 系统构应时间 (s)	聚戊科技(6) HMS-20 氧化核(6)	生产厂商。] 2009。 原型。	CEMS CEMS L2 CEMS 计量单 环值误能	2首限公司 18 (FO-303173 月_01_日 CEMS 基系	松、胖少姐 在在新维维社 中国级报政口 全集组 CEMS 基示	成人场:王 成地点:上 成位置。被 设物名称: (时间:二)	3 4 4
中号 初准性体数	(s)	HMS-200 氧化铸法 '5。 系统响应时间 (s) (定值	軍九科技 1 拍	生产厂商。] 然号。 版理。 作:	CEMS CEMS L2 CEMS 计量单 环值误能	2首限公司 18 (FO-303173 月_01_日 CEMS 基系	於、降少便 在在新推理社 中国國报業口 计製量 G24 年 G2 CEMS 並示 值	成人场:王 成地点:上 成位置。被 设物名称: (时间:二)	3 3 4 4
時間 時間 (4) (5) (6) (6) (6) (6) (7)	受折有疑公司 (s) 1+T2 平身 3	#MS-200 蒸化惰法 *5 系形物皮が何(s) 定位 T2 T=T+T2 26 33	単九科技 (fil	生产厂商。	CEMS CEMS CEMS 计量单 示值实差 (%)	过程限公司 IF (FO-303173- 月_01_日 CEMS 混彩 负得于均在	於、降少便 在在新推進中 中國國报業自 2個 年 02 CEMS 並示 在 31.116	成人功。正 成地点。上 成位置。被 放物名称。 似时间。 惟气体参 考值	3 3 4 4
特別	(s) 中身 3 6 8	#MS-200 蒸化格法 *5 系統物应时何(s) 定在 T2 T=T1+T2 26 33 23 26	単九科技 : El HMS-20 単化格3 - 16 - 単単版 12 - 26 - 23	生产 「例。」 数 号。	CEMS CEMS CEMS 计量单 示值实差 (%)	过程限公司 IF (FO-303173- 月_01_日 CEMS 混彩 负得于均在	於、除少便 在在新推測社 中国協和放口 文學順 624 年 62 CEMS 第示 在 31.136 21.115	成人功。正 成地点。上 成位置。被 放物名称。 似时间。 惟气体参 考值	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
特別	(s) 中岛 (http://ps (ht	#MS-200 単作 第代格法 *6	聚光利技 16 HMS-20 放化格式 % 系统响应 市定值 T2 26 23 23 27	生产了例: 1 数号: 数据:	CEMS CEMS CEMS 注章单 不值误能 1%1	2有限公司 12 (FO-303172) 月_01_日 CEMS 森泉 位等于均在 21,071	ES、除少便 在在新建理社 中国场报签口 计算量 024 年 92 CEMS 基示 机 31.126 21.115 20.982 13.547	成人协。王 北地州。上 北位第一级 北市名称。 北市名称。 北市名称。 北市名称。 大位第一级 北市名称。 北 北 北 北 北 北 北 北 北 北	3 3 4 4
辞報性体数 CEMS 第示 CEMS 展示 保護機 保護機 保護機 保護機 保護機 日本 日本 日本 日本 日本 日本 日本 日	(s)	部MS-200 単位 T2 T=T1+T2 26 33 21 26 27 33 21 26	聚光科技 16 HMS-20 蒸化情态 // 系形响应 再定值 12 26 23 25 27 21	生产「例。」 数型。 数型。 7 7 3 4 6 5	CEMS CEMS CEMS 注章单 不值误能 1%1	2有限公司 12 (FO-303172) 月_01_日 CEMS 森泉 位等于均在 21,071	ES、除少便 在在新建模社 中国版报签口 (24 年 02 CEMS 基示 有 31.116 21.115 20.982 13.547 13.532	成人协。王 北地州。上 北位第一级 北市名称。 北市名称。 北市名称。 北市名称。 大位第一级 北市名称。 北 北 北 北 北 北 北 北 北 北	3 A A A A A A A A A A A A A A A A A A A
特別	(s) 1+12 PB 13 16 19 13 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	#MS-200 株体格式 *5 総体格式 12 T=T1+T2 26 33 23 26 25 39 27 33 31 26 28 27	軍九科技 1 的	生产厂商。 財政。 財政。 TI 7 3 4 6 5 3	CEMS CEMS CEMS 注章单 不值误能 1%1	2有限公司 12 (FO-303172) 月_01_日 CEMS 森泉 位等于均在 21,071	ES、除少便 在在新建選科 中加速相談日 (24 年 02 CEMS 基示 有 31.116 21.115 20.982 13.547 13.532 13.501	《人协、正 允维点:上 人位置。被 他的名称。 《时间、 专业 20.91	3 A A A A A A A A A A A A A A A A A A A
特権 特権 CEMS 第示	(s)	新化格法 *5 ※松物皮が何 (s) 連位 T2 T=T++T2 26 33 23 26 25 29 27 33 21 26 24 27 23 27 24 27 25 27 27 27 28 27 29 29	軍九科技 1 版	生产1 例: 1 例: 1 例: 2 7 3 4 6 5 3 4 7	CEMS CEMS CEMS () 年单年 (%) (1%) (1%) (1%) (1%) (1%) (1%) (1%)	24限公司 18 (FO-393173- 18 (FO-393173- 18 <u>01</u> - 11 CEMS 是杂 (该等于均在 21,071	E. 除少班 在高級網線 中開展網線 124 年 92 CEMS 第示 位 31.116 21.115 20.982 13.547 13.532 13.501 5.825 5.816	《人协、正 允维点:上 人位置。被 他的名称。 《时间、 专业 20.91	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

表 5.15 参比方法评估气体污染物 CEMS (二氧化硫) 核硫度 CEMS生产厂商。果尤科技(批册)股份有股份可 图试人员: 王 松, 陈少夏 演式地点:上抗红新建源针拉有限公司 CEMS 型号: 测试位差: 监使组团指接口 14 (FO-9/3173-17) CEMS 原理。<u>核立叶来换红外允诺法</u> 参比方法仅需生产厂商。<u>有品够山原园技术研究所</u> 划号。<u>5012日-15</u> 原理: 空电位电解法 何集物名称, 二氢化胺 计矩单位: mgm2 测试日期 好导 时间(时,分) 参比方法测量值 A CEMS 侧量值 B 数据对范-B-A 11:48-11:53 ND 1.369 -0.131 2 12:20-12:25 ND 2.041 0.541 3 12:28-12:33 ND 1.604 0.104 4 12:43-12:48 ND 0.178 13:00-13:05 ND 2.019 0.519 13:07-13:12 6 ND 1.799 0.293 13:16-13:21 1.473 -0.027 13:55-14:00 ND. 1.865 0.365 2024.02.02 9 14:02-14:07 ND. 1.639 0.139 平均值 1.720 0.220 数据对差的平均值的绝对值 0.220 数据对差的标准偏差 0.23 質信系数 0.18 相对非确度 26.5% 施利证款 0.2 相时景楚 6.84% 参比方法例集值 相对误差 (%) 名物 保証值 光样像 采样后 菜件层 标准气体 57.14 57.6 57.8 1.2 二氧化硫 113.71 110.6 114.8 1.0 170.5 171.4 -0.3 往: ND表示位置结果抵于方法检组框: 计算平均值以检出限的 1位 参与统计。 M 15 K 7: 27 M

AB	SIE NOT					#8W	0 : xa tc 200401	
	# 4	16 参比方法评估	NA CONTRACTOR	ecrase (dat and Its ode a	Mare de		
测试人员。								
							I RETRO	
		企業科技有限公司			FI			
指试位置。	152°41'81	PM D 14 (FO-36317)	(1)	CEMS 80.5	f. (8.0.1+3	E1841.65	elitat.	
参比方法位	卷生产厂员	 資品報应应用技术 	研究新 . 智	∜: <u>1012H</u>	D 1	施 定	也位电解法	
传染物名称	REEL		11	量单位, m	jo'm ³			
層式目別	8.6	野州(村、分)	8E.58	· 對重性 A	CEMS #	E FF B	数据对前-B-/	
	1	11:48-11:53		25	139.75	13	14.793	
	2	12:20-12:25		46	48,07	5	2,078	
	3	12:28-12:33		36	65.70	8	31.708	
	4	12:43-12:48		81	102.207		21.207	
	5	13:00-13:05	1	73	82.176	5	9.176	
	6	13:07-13:12		19	57,848		8,848	
	T.	13:16-13:21		52	52.752		0.752	
2024.02.03	8	13:55-14:00	1	23	129.58	9	6.559	
100000	9	14:02-14:07	1	27	142.27	8	15.278	
		平均值	8	1	91,155		10.155	
	数据对象	的子类似的绝对值				10.155		
	数据	材裁的标准偏差			6.50			
		第信系数			5.00			
		用对库确度		17	18.2%			
		经对决处			10.2	0.18		
		相对设施			5.69%			
		88	SUE III	参比方	计解整组	相対	说些(%)	
	1931			Ren	米器店	采样的	果推后	
5准气体			69.1	61.1	62.7	1.7	4.3	
777		一年代度	125	125.7	127.6	0.6	2.1	
2 1			199.6	201.3	197.4	0.9	-1.1	

第 15 天 水 28 美

附件 11CMES 设备检测报告

环境保护部

环境监测仪器质量监督检验中心

检测报告

质(认)字 No. 2022-195

产品名称:

CEMS-2000 B FT 型烟气(SO₂、NO₃、HCI、 CO)排放连续监测系统

委托单位:

聚光科技(杭州)股份有限公司

.....

认证检测点

检测类别:

报告日期: 2022年6月28日

编制说明

- 本报告无检测单位"测试专用章"、"恒产章"及骑缝未加盖"测试专用章"无效。
- 2. 本报告涂改无效, 无审核、签发人签字无效。
- 3. 本报告仅对被检样品负责。
- 4. 本报告复印件无效。
- 5. 本报告未经许可不得作为广告宣传。
- 6. 本报告有效期截止至 2027 年 6 月 27 日。
- 7. 对本报告如有异议,应于收到报告之日起十五日内向检测单位提
- 出,逾期不予受理。

联系方式:

单 位: 中国环境监测总站

(环境保护部环境监狱仪器质量监督检验中心)

地 址:北京市朝阳区安外大羊坊8号院(乙)

电 话: (010) 84943047

传 真; (010) 84949037

邮政编码: 100012

环境保护部环境监测仪器质量监督检验中心 检测报告

报告编号: 质(认)字 No. 2022-195

产品名称	划气(SO ₂ 、NO ₃ 、FICI、CO) 排放连续数据系统	产品担号	CEM5-2000 B FT
委托单位	激光科技 (4	(州) 股份有限公	M)
生产单位	第光科技(杭州)版份有限公司	样品数量	3
经数二股损	① 376P2050013 ②	76P2050005 (E	376P2050008
生产日期	2020年5月	塔松日期	2021年1月
实验室 检测项目	二氧化供放剂单元。 仅 表明应时间, 一周 零点和最短源漆、环境温度变化 变化的影响、平式成分的影响、平寸 一氧化度放射率元。 仅表响应时间, 一周 零点和量隔漂涂、环境温度变代 安化的影响、干扰成分的影响、平寸 空机化级股源率元。 仅 表响应时间。 " 支化的影响、干扰成分的影响,平时 更优的影响、干扰成分的影响,平 等二粒形型。 " 大坡南流过时间, "	化的影响。进样强 7性。 重复性、线性误差 2的影响、进样强 7性。 重复性、线性误差 2.的影响。进样宽 7性; (性、线性误差。2 8响、进样流量变	量变化的影响、供电电压 进、244等点和重微源等。 量变化的影响、供电电压 进、244等点和重型原等。 量变化的影响、供电电压 量变化的影响、供电电压 44等点和重程原移、一层
现场 检测项目	二氧化镍 CEMS, 24h 零点和量程器 類氧化物 CEMS, 24h 零点和量程器 氧化氮 CEMS, 24h 零点和量程器 氧化氮 CEMS, 24h 零点和量程器 氧气 CMS, 24h 零点和量理器移 筑远波煌湿润柔锐, 建恒乐聚精制 湿度连续锭润系锐, 冰晌沒, 程度连续锭润系锐, 冰晌沒,	移、示值误差、系 、示值误差、系的 移、示值误差、为 示值误差、系统响	統明应时间、准确度; 使响应时间、推确度; 6統响应时间、准确度;
检测日期	The second secon	月~2022年5月	HOR HON
檢測依賴	 (固定污臭等單气(SO₂、NO₃、 無方法)(EI 76-2017) (生活垃圾快烧固定调烟气(弱 衰系统技术要求及检测方法(作 	验物、SO ₂ 、NO _X 、	HCI、CO) 排放连续设
检测结论		合 格	
6 tr	 本系能连续数别规气中二氧化硫 氧气、烟气激速、烟气温度及规 2、烟气测量采用直接指取涂值方式, 和一氧化酸剂量采用间里非红外 采用 S 型皮折管法。理度测量采 	气湿度 二氧化质,一氧 最收法: 氧气测量:	化氦、二氢化氢、氯化氢 采用氧化铀(2)。 化泡剂量

报告编创人: | 首| 市核人: 下沙山 签发人:

签发日期: 乙丸27年 6

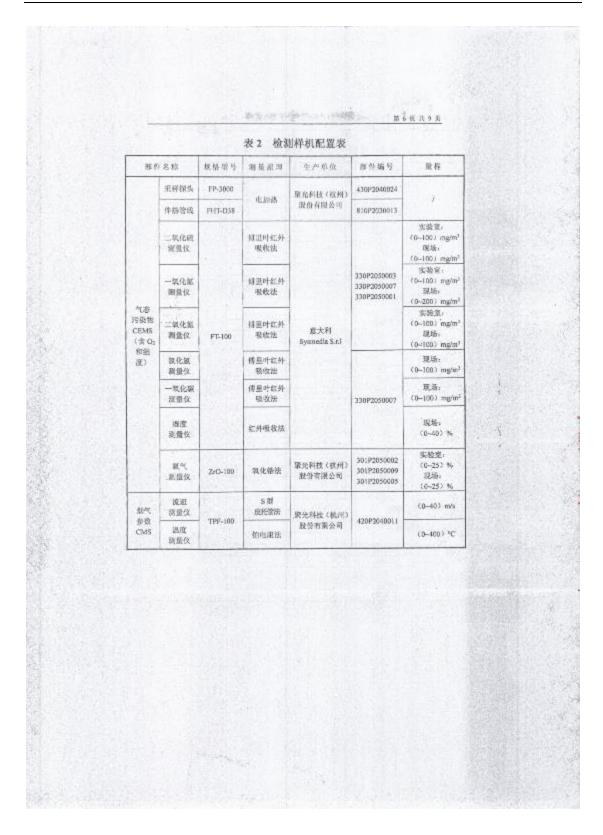
M 2 E = 9 7

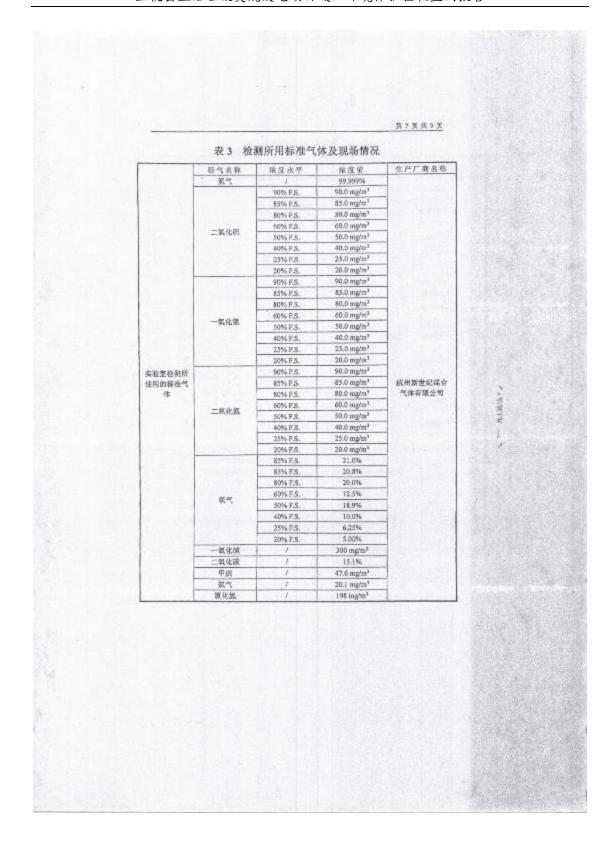
表 1 检测结果

	实验室检验项目		性銀術		檢觸結果		然項
	24/8/20	经保持日	标要求	376P2030013	376P203Q005	376P2030008	好效
		仅表响应时间	≤120 s	86 s	81 s	79 s	会书
8	125	原复性	≤2%	0.2%	0.4% F.S.	0.2% F.S.	合於
		线性资金	±2% F.S.	-0.7% P.S.	-1.1% F.S.	0.8% P.S.	会校
		245 年点逐移	±2% F.S.	1.9% F.S.	-0.9% F.S.	-0.9% F.S.	合有
		245 情報電器	±2% F.S.	-1.8% F.S.	-1.2% F.S.	-0.7% F.S.	台灣
	二氧化烷	一周等点都珍	±3% F.S.	-1.6% F.S.	-0.6% F.S.	-1.0% P.S.	台灣
g	拉斯单元	一周景程憑等	±3% F.S.	0.6% F.S.	1.1% 7.8.	0.6% P.S.	合书
8	500	环境温度变化的影响	±5% F.S.	-1.5% F.S.	1.1% F.S.	1,8% F.S.	合意
		进样完量变化的影响	±2% F.S.	0.4% F.S.	0.2% F.S.	0.4% F.S.	合意
	1	供电电压变化的影响	±2% F.S.	<0.1% F.S.	0.2% F.S.	0.5% P.S.	会书
		干扰成分的影响	±5% F.S.	1.0% F.S.	-1.8% F.S.	-3.1% F.S.	01
9	Sell Com	平行性	≤5%		1.6%	098	86
	John Janes	仪录响应时间	≤120 s	85 s	89 s	81 s	会书
5	200	重复性	≤2%	0.4% F.S.	0.6% F.S.	0.7% F.S.	*
		线性误差	±2% F.S.	-1.0% F.S.	0.9% F.S.	1.0 F.S.	合料
6	100	24h 零点源移	±2% F.S.	0.9% F.S.	-1.0% F.S.	-0.8% F.S.	合料
		24h 無程源移	±2% F.S.	-0.8% F.S.	-0.5% F.S.	0.7% F.S.	会书
	一氧化氮	一用零点倒移	±3% F.S.	-0.6% F.S.	-0,8% F.S.	-0.6% F.S.	4
ä	拉别单元	一周景程原移	±3% F.S.	1.4% F.S.	-1.8% F.S.	1.6% F.S.	+
		环境退度变化的影响	±5% F.S.	0.9% F.S.	-2.2% F.S.	-1.5% F.S.	台村
	ALC:	法释流量变化的影响	±2% F.S.	0.2% F.S.	-0.3% F.S.	-0.2% F.S.	合料
		供电电压变化的影响	±2% F.S.	0.2% F.S.	-0.3% F.S.	0.2% F.S.	8
		干扰成分的影响	±5% F.S.	0.8% F.S.	0.6% F.S.	0.5% F.S.	合书
		平行性	≪5%		1.7%		合有
	N. Carlot	位表响应时间	≤120 s	85 s	81 s	78.8	合书
		重复性	≤2%	0.3% F.S.	0.4% F.S.	0.4% F.S.	合书
		线性误差	±2% F.S.	-1.0% F.S.	0.3% F.S.	0.9% F.S.	合作
	二氧化氮	24h 琴点源移	±2% F.S.	0.4% F.S.	0.7% P.S.	0.6% F.S.	合书
	黨的单元	24h 無程譜移	±2% F.S.	1.1% F.S.	-0.8% F.S.	1.0% F.S.	台书
	CE PA	一规學点頒移	±3% F.S.	0.5% P.S.	-0.6% F.S.	-0.4% F.S.	台村
	-	一四条股票移	±3% F.S.	~1.2% F.S.	0.7% F.S.	1.3% F.S.	会书

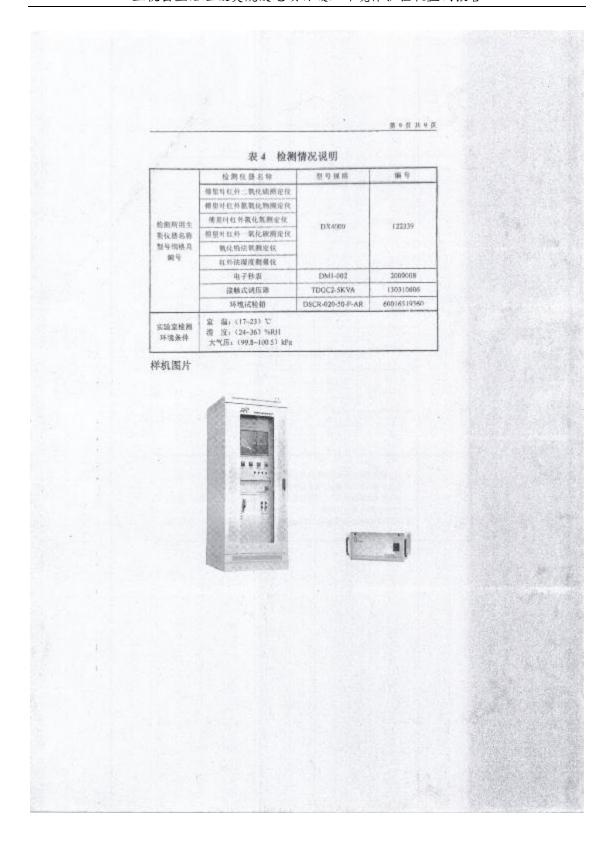
第1页共9页

维表

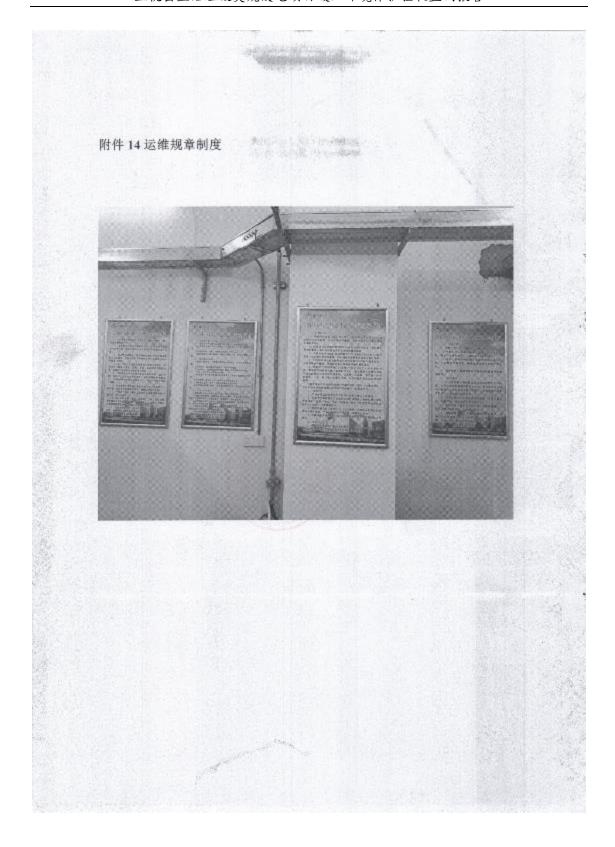

	d- 20 gr	检测项目		性能物板		检测结果		無項
	54 94 20	松卷林		要求	3761/2030013	376P2030005	376P2030008	呼定
91		环境温度	变化的影响	±5% F.S.	-0.4% P.S.	1.4% F.S.	0.7% F.S.	会格
19	4 1 4	进样欲量	变化的影响	±296 F.S.	0.4% F.S.	0.5% F.S.	0.6% F.S:	会格
10	二氧化氮	供电池	变化的影响	土2% 7.9.	0.5% P.S.	<0.1% F.S.	-0.2% P.S.	会格
13	man with	干扰成	分的影响	±5% F.S.	1.2% F.S.	0.6% F.S.	0.6% F.S.	会格
		30	竹性	≤5%		2.0%		合格
	1 9 9	枚表*	加坡时间	≤120 s	68 s	43 s	40 s	合格
		1	気性	≤256	1.1% F.S.	<0.1% F.S.	0.2% F.S.	台格
		ART	性供益	± 2% F.S.	-0.3% F.S.	0.3% P.S.	0.3% F.S.	合格
		24h \$	华泰岛	±2% P.S.	0.1% F.S.	<0.1% F.S.	<0.1% F.S.	合格
S		24b 2	t程揮莎	±2% F.S.	-0.3% F.S.	0.3% F.S.	0.4% F.S.	合格
7	20年	一版	9点赛修	±3% F.S.	<0.1% F.S.	<0.1% F.S.	-0.2% F.S.	合格
	压测单元	一度	电程振移	±3% F.S.	-1.4% F.S.	-0.8% F.S.	-0.3% F.S.	合格
		1,75000	要化的影响	±5% F.S.	-0.2% F.S.	-0.6% F.S.	<0.1% F.S.	合相
敦			受化的影响	±2% F.S.	0.1% F.S.	<0.1% F.S.	0.1% F.S.	合有
		供电电压	中电压变化的影响	±2% P.S.	<0.1% F.S.	<0.1% F.S.	<0.1% F.S.	合相
		干扰成	分的影响	±5% F.S.	<0.5% F.S.	<0.5% F.S.	<0.5% F.S.	合用
		平	平行性 <5% 0.0%		0.016	Alexania.	合格	
	現場	5位别习	8		性能指标要求		全務結果 76P2030U05	单方 评定
3			示值误!	10	土5%(标称值)		0.5%	숙성
			系统响流和	初	≤200 s		102 s	合相
19		初检 期间	24h 寧点8	58	数 ±2.5% ₹.S.		-0.7% F.S.	
**	=44	and a	24h 最被8	58	±2.5% F.S.		0.8% F.S.	合格
築	化能 CEMS	G.F.	78.00.00		<57 mg/m² 时, 绝对液脏≤17 mg	m ³	2.9 mg/m ³	合材
物			24h 琴点8	京保	#2.5% F.S.		1.1% F.S.	合格
		复检 期间	246 景报2	18	±2.5% F.S.		0.4% F.S.	合格
	57	WO I-I	25.60(0)		<57 mg/m² 的。 的对误整<17 mg	m³	2.3 mg/m ³	8 4


第5页共享页

換表


76.9	植制项	(a)		The second second second second	作用	
	7/4 -0 10 01 21 10		性能指标要求	276P2030005	评定	
		示值误差	±2.5% P.S.	0.1% F.S.	合格	
	机枪 机阀	系统响应时间	≤200 s	101 s	合格	
16		初松	24h 琴点源移	±2.5% F.S.	0.5% F.S.	台格
0.5		265 抵稅領移	±2.5% F.S.	-1.2% F.S.	合格	
中 集 化 化 CEMS		nag	< 25 mg/m ¹ 时, 绝对误差<8 mg/m ³	4.7 mg/m ³	合格	
to Curio		24h 学点调移	±2.5% P.S.	0.5% F.S.	合格	
100	复枪	24h 無相類移	±2.5% F.S.	0.2% F.S.	会有	
	34 (40	物用液	< 25 mg/m ⁵ 附, 排別 議22 < 8 mg/m ³	<0.1 mg/m ³	合格	
		示机误差	土5% (振移值)	-1.2% F.S.	合成	
76		系统响应时间	≤200 s	81 s	습적	
	初检	24h 零点顺移	±2.5% F.S.	0.1% F.S.	合品	
教气	Wild	24h 景智順移	±2.5% F.S.	-0.1% F.S.	会员	
CMS		推模度	相对准确度《15%	8.7%	습부	
	复检 期间	24h.零点源移	±2.5% P.S.	40.3% F.S.	合名	
		24h 景程祭移	±2.5% F.S.	<0.1% F.S.	合名	
22		推築座	相对准确度<15%	6.2%	会员	
T SERVE	初检 期间	速度场系数 精密度	≤5%	0.7%	会员	
# <u>#</u> # # # # # # # # # # # # # # # # #	复檢 期间	性範度	>10 m/s 时。 相对误差±10%	-0.4%	☆ 8	
数 温度達	初检期间	准确度	#3 %	0.6 °C	台灣	
線放器 - 系統	复检 斯问	准确度	±3 °C	<0.1 °C	会有	
祖皮施	初检 期间	推确度	>5.0%时。 相对误差±25%	-2.1%	全书	
線控制 系統	复检 期间	海鞘度	>5.0%时。 相对说差±25%	0.2%	合名	

组: F.S. 表示满意框: 繁氧化物以 NO₃ 计。


接点 接点 接点 接点 接点 接点 接点 接点
接近 接近 接近 接近 接近 接近 接近 接近
接触性体 生产厂育名称 接触性 接触性 接触性 接触性 接触 接触 接触
様性
第4
二親化調 中 55.5 mg/m²
住 25.0 mg/m² 170 mg/m² 170 mg/m² 170 mg/m² 110 mg/m²
一架化課 170 mg/m² 110 mg/
一架化課 110 mg/m ² 110 m
一氧化調 110 mg/m² 150 mg/m² 155.0 mg/
登録所使 特殊性性体 低 25.0 mg/m ² 高 85.0 mg/m ² 女 25.0 mg/m ² 東 25.0 mg/m ² 毎 25.0 mg/m ² 一 単 35.0 mg/m ² 中 35.0 mg/m ² 中 35.0 mg/m ² 中 35.0 mg/m ² 年 25.0 mg/m ² 中 35.0 mg/m ² 年 25.0 mg/m ² 中 13.8%
行性性性
表 85.0 mg/m ² 中 55.0 mg/m ² 任 25.0 mg/m ² 年 85.0 mg/m ²
変化集 中 55.0 mg/m² 度 25.0 mg/m² 高 85.0 mg/m² 中 55.0 mg/m² 安 25.0 mg/m² 高 21.3% 東气 中 13.8%
任 25.0 mg/m ³ 高 85.0 mg/m ² 一氧化級 中 55.0 mg/m ³ 任 25.0 mg/m ³ 高 21.3% 取气 中 13.8%
海 85.0 mg/m ² 一氧化級 中 55.0 mg/m ² 版 25.0 mg/m ² 高 21.3% 氧气 中 13.8%
一氧化碳 申 55.0 mg/m² 版 25.0 mg/m² 高 21.3% 氧气 中 13.8%
版 25.0 mg/m² 高 21.3% 東气 中 13.8%
高 213% 氧气 中 13.8%
第一 中 13.8%
 现场检测系统安德在生活垃圾货施催化展课、半干祛脱碳、活性炭级前、有 淀除生活的水平规道上。伴然管线长 35 米。 本板管中如无熔线注明。所有质量浓度单位 (mg/m²) 均为标志下 (0 ℃。 101.325 kPa) 的干事浓度。 CEMS (Continuous Emission Monitoring System) 指規气体放连续控制系统。

附件 12 试运行报告

	证	试运行报告			
项目名称	上杭红新能源科技有限公司				
建设单位	聚光科技杭州股份有限公司				
承建单位		聚光科技杭州股份有限。	公司		
设备名称	数量	仪器型号	设备编号		
烟气 (SO2、NOX、 ICL、CO) 排放连续 监测系统	2	CEMS-2000 B FT型	473P2260002 473P2260001		
激光烟尘测试仪	2	Synspec PM	456P2298010 473P2360001		
温压流分析仪	2	MODEL 1080	753P228000D 753P228000C		
氧化锆氧分析仪	2	HMS-200	Y22080233 Y22090178		
运行情况描述: 设备安装完成时间 设备调试完成时间; 设备联网时间; 自2023 年 间 168h。	月: <u>2023</u> 年 2023 年 <u>1</u> 1	12月16日	S平均无故障连续运行时		
备注		必源科会			
调试人员签字	324				
业主意见及签字		(3/3)			
日期	1000000	2023年 12 月 1	7 []		

附件 15 联网测试报告 上杭红新能源科技有限公司 联 XX 测

一、概述

上杭红新能源科技有限公司赞烧炉 H1(30173-1)排放口环保数采仪设施于 2022 年 6 月 10 日完成安装,2023 年 12 月 10 日至 2023 年 12 月 16 日进行调试。

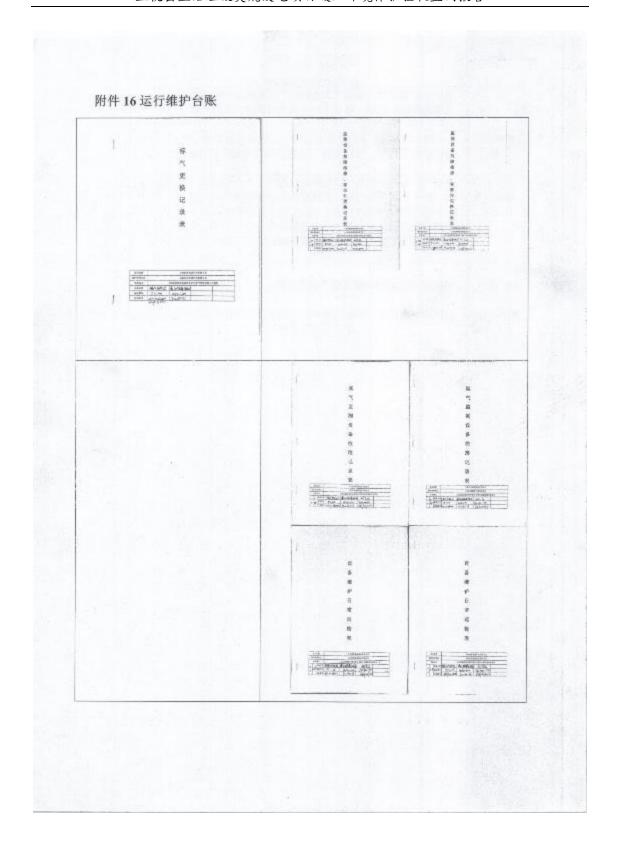
运行期间主要是对数据采集传输仪进行适应性检查、接口与显示设备检查、诊断检查、独立性检查、管理安全检查、数据处理与检索检查、远程通信和校正检查 及现场故障模拟恢复试验,联网部分进行通信稳定性、数据传输安全性、通信协议 正确性、数据传输正确性、联网稳定性的检查。

调试与运行的检查结果表明,安装的数据采集传输仪及联网符合和关标准,符合验收条件。

	make the contract of		1 24 1	24 24	22201			A 400 CO.	
- 1	207 - 11	S 137	Att	传输	1. 1	: HH :	sups ,	Meter MIT	
	2201 40	H- 100	1000	THE THU	400	Het.	3-1	100 4 100	

	200000000000000000000000000000000000000	601/4
检查项目	检查标准	检查
适应性检查	只修改数据采集传输仪的系统设置和建立相应的测试模板,就可以适应新的烟气污染源在线监测仪器,修改其系统设置可以改变监测对象,采集通类型可以自由设定,登录时应可设置3个以上安全级别,以确保数据的安全性和保密性。	符合
接口与显示设备检查	A、数据采集传输仪应具备标准串行口(RS485/RS232)接口、继电器输出接口等,可以通过RS485/RS232接口,向上位机发送数据,以便实时监控烟气排放状况。 B、数据采集传输仪接口应具有扩展功能、模块化结构设计,可根据使用要求,增加输入、输出通道的数量,以满足用户的各项监控功能要求。 C、数据采集传输仪应能实时显示烟气污染源在线监测仪器和辅助设备的工作状态和报警信息,可以用图、表方式实时验示污染物排放状况和环境参数。	符合
诊断检查	数据采集传输仪对烟气在线监测仪路具备故障判断功能(传感器故障报警、超析服警、通信故障报警、断电记录等)。	符合
独立性检查	当数据采集传输仪与上位机通信中断时,数据采集传输仪 能独立工作,仍具有数据采集、控制燃气污染源在线监测 仪器和辅助设备 运行等各种功能。	符合
管理安全 检查	应具备安全管理功能,操作人员需登录账号和密码后,才 能进入控制界面,对所有的操作均自动记录、保存。登录 时应具备不少于3级以上操作管理权限。	符合

况报告、烟气测定数据报告、掉电记录报告、操作记录报告和仅器校准报告。 A、烟气测定数据和各类仪器运行状态数据(详见四) B、掉电记录报告 当数据采集传输仪外部电源掉电又恢复供电时,系统应能自动启动,自动恢复运行状态并记录出现掉电的时间和恢复运行的时间。 C操作记录报告对运行参数设置的修改等操作,数据采集传输仪自动记录,可对这些记录调用。 2、数据检索功能能检索不同日期的历史数据,并进行报表统计和图形曲线分析;自动生成日报、月报、年报。	
烟气污染额在线监测系统现场验收过程 中,人为模拟现场断电、断气和断所等故障。 在恢复供电等外部条件后,烟气污染源在线监 测系统应能正常自启动和远程控制启动。在数	符合
	A、烟气测定数据和各类仪器运行状态数据(详见四) B、掉电记录报告 当数据采集传输仪外部电源掉电又恢复供电时,系统应 能自动启动,自动恢复运行状态并记录出现掉电的时间和 恢复运行的时间。


三、联网调试情况

各项性能	性能指标	检查 结果
通讯稳定 性	数据采集传输仪和上位机之间的通信稳定,不出现经常性的通信连接中断、报文丢失、报文不完整等通信问题。数据采集传输仪在线率为95%以上,正常情况下,掉线后,应在5分钟之内重新上线。单台现场机(数据采集传输仪)每日掉线次数在3次以内。数据传输稳定,报文传输稳定性在99%以上,当出现报文错误或丢失时,启动纠错逻辑,要求数据采集传输仪重新发送报文。	
数据传输 安全性	为了保证监测数据在公共数据网上传输的安全性,所采用的数据采集传输仪,在需要时可以按照 HJ212 中规定的加密方法进行加密处理传输,保证数据传输的安全性。一端请求连接另一端应进行身份验证。	符合
通讯协议 安全性	采用的通信协议应完全符合 HJ212 的相关要求。	符合
数据传输 正确性	系统稳定运行一个月后,任取其中不少于连续7天的数据进行检查,要求上位机接收的数据和数据采集传输仪采集和存储的数据完全一致;同时检查烟气污染源在线监测仪	符合

	器显示的演定值、数据采集传输仪所采集并存储的数据和 上位机接收的数据,这三个环节的实时数据应保持一致。	
联网稳定 性	在连续一个月内,系统能稳定运行,不出现险通信稳定性、通信协议正确性、数据传输工确性以外的其他联网问题。	符合
现场故障 模拟恢复 试验	在烟气污染源在线系统现场验收过程中,人为模拟现场断电、断气和断气等故障,在恢复供电等外部条件后,烟气污染源在线监测系线应能正常自启动和远程控制启动。在数据采集传输仪中保存故障前完整分析的分析结果,并在故障过程中不被丢失。数据采集传输仪完整记录所有故障信息。	符合

四、通信、联网稳定性及数据传输正确性统计分析

按国家标准,系统稳定运行后,任取其中不少于连续7天的数据进行检查,各项指标全部符合验收要求。

附件十七:

上杭红新能源科技有限公司 1"、2"焚烧炉烟气连续监测系统 验收意见

上杭红新能源科技有限公司于2024年3月17日组织召开了1°、2°焚烧炉烟气连续监测系统验收会,参加会议的有聚光科技(杭州)股份有限公司(设备供应单位)、福建安格思安全环保技术有限公司(比对验收监测单位)等部门与单位的代表,以及应邀的2位专家,共计6人,会议成立了验收组(名单附后),与会专家和代表勘查了现场,听取项目概况、查看了试运行报告和比对验收监测报告内,经认真讨论、审议,形成以下验收审查意见:

一、项目概况

上杭红新能源科技有限公司在1°、2°焚烧炉分别建设一套烟气连 续监测系统。两套系统包含聚光科技(杭州)股份有限公司生产的两套 CEMS-2000 B FT 型烟气(SO2、NOX、HCL、CO)排放连续监测设施、Synspec PM激光烟尘测试仪、MODEL 1080温压流分析仪、HMS-200氧化锆氧分析 仪。完成仪器设备安装调试后投入试运行, 2024年2月上杭红新能源 科技有限公司委托福建安格思安全环保技术有限公司对该系统进行比对 验收监测。

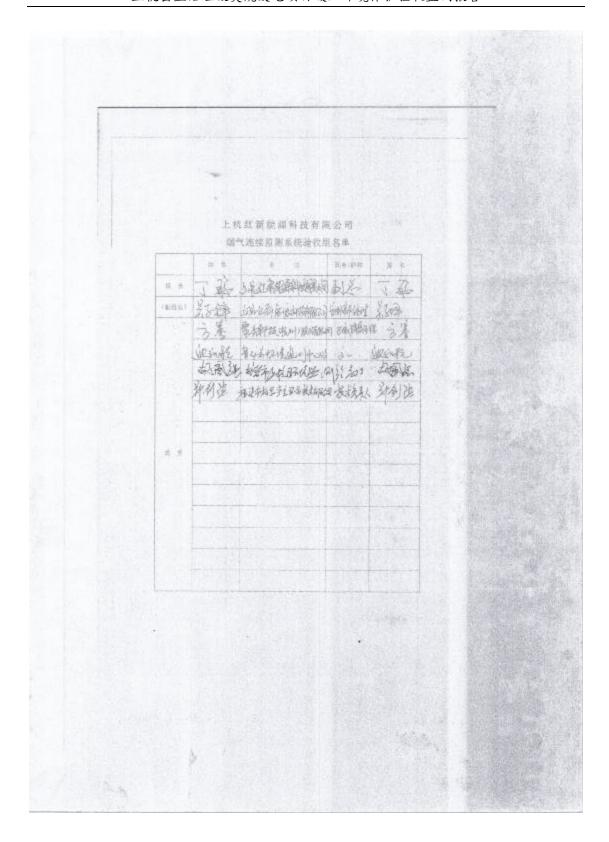
二、站房建设和气体采集设备

上杭 红 新能 源 科 技 有 限 公 司 1°、2°焚烧炉烟气连续监测系统站房 建设基本满足相关要求,有专室专用,气体采集设备安装位置符合要求, 结合现场检查,原则同意站房建设和气体采集设备通过验收。

三、自动监测仪器及系统部分

根据试运行报告及福建安格思安全环保技术有限公司的比对验收监测报告,并通过现场检查,该系统采集部分、分析部分、传输控制部分等符合要求,仪器性能基本符合《固定污染源烟气(S02、N0x、颗粒物)排放连续监测技术规范(试行)》(HJT75—2017)等相关规定的要求,原则同意1*、2*焚烧炉烟气连续监测系统通过验收。

四、存在问题及建议


- 补充《生活垃圾焚烧发电厂现场监督检查技术指南》、《生活垃圾 焚烧发电厂自动监测数据应用管理规定》为验收依据,并按要求完善验收 要求和日常管理,做好设备的运维记录和技术档案,规范记录的填写。
- 完善站房建设情况说明(温度湿度控制、面积、视频监控、防雷设施、标气等),站房应选用合适消防器材(建议用二氧化碳灭火器)。
- 3. 完善设备的基本情况说明(功能、性能、量程)完善联网的佐证等 材料(部门证明或联网的截屏),系统故障、停用、拆除需及时上报上杭 生态环境局。
- 说明设备的运维情况,加强设备管理人员的培训,管理人员需挟证 上岗。

五、验收结论

上杭红新能源科技有限公司 1°、2°焚烧炉烟气连续监测系统基本符合《固定污染源烟气(S02、NOx、颗粒物)排放连续监测技术规范(试行)》(HJ/T75-2017)等相关技术规范的要求,系统运行正常,验收组同意该项目通过竣工验收。

2024年3月17日

附表:验收组签字

附件十八: 专家组复审意见:

《上杭紅斯能源科技有限公司 1#、2#焚烧炉烟气连续临视系 统验收报告》专家复审意见

上航紅新能源科技有限公司于2024年3月17日组织召开了1、2°类條炉個气连续监测系统验收会。专家代表提出了现场整成和报告修改意见。2024年3月23日、上杭红新能源科技有限公司提供了《上杭红新能源科技有限公司提供了《上杭红新能源科技有限公司接供了《上杭红新能源科技有限公司的被服专家意见对部分工程现状存在的问题进行整改并提供了还证材料、般收报告根据专家、代表的就见进行了修改、修改后的验收报告满足要求、可作为竣工验收依据、专家组词愈本项目通过竣工环域保护验收。

专家组长, 如如此

2024年3月24日

附件 14: 工况证明

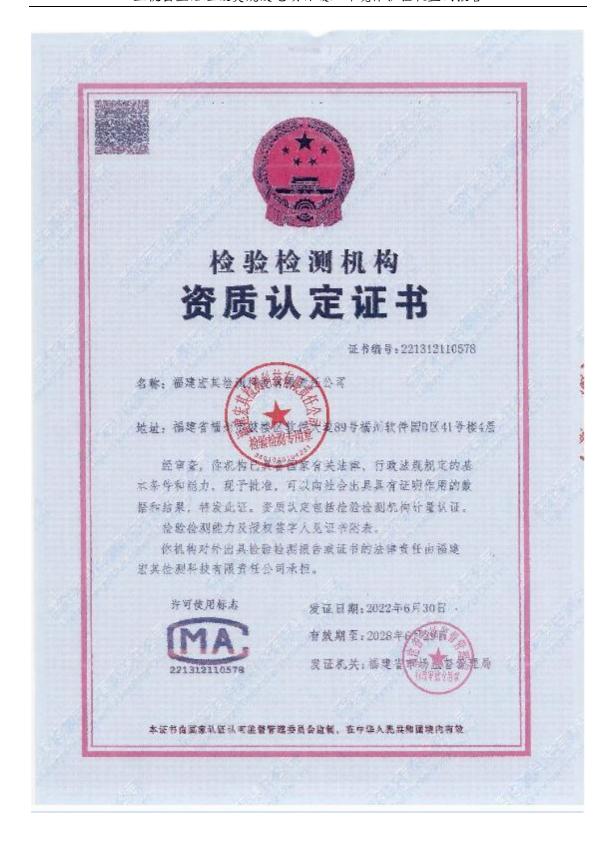
企业工况记录表

	正正元的四次代		
企业名称	上杭紅新能源科技有限公司		
生产规模(设计规模)	垃圾处理 600 吨/天、断余垃圾 30 吨/天		
主要原辅材料及其 用量(检测日)	燃烧生活垃圾 \$42.07 吨(其中 1#262.03 吨、2#280.04 吨)、断余垃圾 23.1 吨、发电量 200125 千瓦时、氦水 1.1 吨、活性炭 1.04 吨、PNCR 脱硝剂 0.3 吨、柴油 12.07 吨、石灰 2.73 吨、PAM 25kg、PAC 50kg 片碱 50kg、破乳剂 50kg。 监测时间:2024年1月15日		
主、胡产品及其产量 (检题日)	炉油 41 吨 飞灰 9.22 吨 监测时间: 2024 年 1 月 15 日		
主要用水及用水量 (檢測日)	生产用水 105.77 吨 监测时间: 2024年1月15日		
处理设施	(废水) 设施名称: 公司漆總液处理站 处理能力: 300T/d 监测时实际处理量: 108 吨 (废气) 设施名称: SNCR+PNCR-丰干法脱酸+干法脱酸+活性炭吸附+湿沙 脱료+布袋除尘 处理能力: 监测时实际处理量: 14分 1055359m² 24分 830589m²		
设备生产工说 (检题日)	542.07T/d 焚烧生产绿、(其中 1#262.03 吨、2#280.04 吨) 工况为 1		
各注			
企业簽章	日期: 2024 E 1月 15 日		

企业工况记录表

企业名称	上杭红新能源科技有限公司		
生产规模(设计规模)	沒圾处理 600 吨/天、匠余垃圾 30 吨/天		
主要原納材料及其 用量(检測日)	燃烧生活垃圾 501.5 吨 (其中 1/239.54 吨、2/227.41 吨)、厨余垃圾 22.6 吨、发电量 205725 千瓦时、氨水 0.8 吨、活性炭 0.26 吨、PNCR 脱硝剂 0.3 吨、柴油 0.63 吨、石灰 2.5 吨 监测时间; 2024 年 1 月 16 日		
主、制产品及其产量 (检鎖日)	炉油 40.82 吨 飞灰 8.53 吨 监测时间: 2024年1月16日		
主要用水及用水量 (検護日)	生产用水 126.56 吨 监测时间: 2024年1月16日		
处理设施	(废水) 设施名称: 公司漆總液处理站 处理能力: 300T/d 监测时实际处理量: 72 吨 (废气) 设施名称: SNCR+PNCR-丰干法脱酸+干法脱酸+活性炭吸附+湿污 脱硫+布袋除尘 处理能力: 监测时实际处理量: 1+分 992573m ³ 2#分 1017564m ³		
设备生产工说 (检题日)	501.5T/d 焚烧生产线,(其中 1#239.54 吨、2#227.41 吨)工况为 1# 炉 79.8%, 2#炉 75.8%、固全垃圾处理 75.3%。 监测期间环保设施运行正常		
各注			
企业簽章	日期 2024年1月16日		

企业工况记录表


	72 102		
企业名称	上杭红新能源科技有限公司		
生产规模(设计规模)	垃圾处理 600 吨/天、医余垃圾 30 吨/天		
主要原納材料及其 用量(检测日)	燃烧生活垃圾 461.87 吨 (其中 1#233.41 吨、2#228.46 吨)、断余垃圾 24.5 吨、发电量 183500 千瓦时、氦水 0.9 吨、活性炭 0.28 吨、PNCR 脱硝剂 0.5 吨、 填注 0.55 吨、 石灰 1.42 吨、 杀菌剂 50kg 监测时间: 2024 年 1 月 17 日		
主、制产品及其产量(检鎖日)	炉油 59.01 吨 飞灰 7.85 吨		
333203000000000000000000000000000000000	监测时间: 2024年1月17日		
主要用水及用水量 (檢製日)	生产用水 126.5 吨		
1.	監測时间: 2024年1月17日		
处理设施	(废水) 设施名称: 公司漆總液处理站 处理能力: 300T/d		
设备生产工就 (检题日)	461.87T/d 焚烧生产线。(其中 1#233.41 吨、2#228.46 吨)工况为 1		
各注			
企业签单	海科·		

企业工况记录表

	72 102		
企业名称	上杭红新能源科技有限公司		
生产规模(设计规模)	垃圾处理 600 吨/天、医余垃圾 30 吨/天		
主要原納材料及其 用量(检測日)	燃烧生活垃圾 461.9 吨(其中 1#227.99 吨、2#233.91 吨)、厨余垃圾 25.6 吨、发电量 177050 千瓦时、氨水 0.9 吨、活性炭 0.24 吨、PNCR 脱硝剂 0.6 吨、柴油 0 吨、石灰 1.22 吨 监测时间: 2024 年 1 月 18 日		
主、副产品及其产量 (检鎖日)	护策 59.3 吨 飞灰 7.85 吨		
主要用水及用水量 (檢製日)	监测时间: 2024年1月18日 生产用水 134.7吨 监测时间: 2024年1月18日		
处理设施	(废水) 设施名称: 公司漆總液处理站 处理能力: 300T/d 监测时实际处理量: 85 吨 (废气) 设施名称: SNCR+PNCR-丰干法脱酸+干法脱酸+活性炭吸附+湿沙脱填+布袋除尘 处理能力: 监测时实际处理量: 1+ が 897170m ³ 2# が 674475m ³		
设备生产工说 (检题日)	461.9T/d 焚烧生产线, (其中 1#227.99 吨、2#233.91 吨)工况为 1# 炉 76.0%, 2#炉 78.0%、固全垃圾处理 85.3%。 监测期间环保设施运行正常		
各注			
企业签单	通科· 2024年1月18日		

附件 15: 验收检测报告

报告: HQIC(2024)011501-1

上杭男生活垃圾焚罐发电项目竣工环境保护验收

第1页共17页

福建宏其检测科技有限责任公司

声明

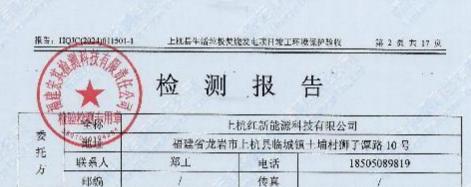
。报告及复制报告未加盖"福建宏其检测科技有限责任公司检验检测

报告专用章"、"MA 专用章"、骑维章无效!

- 二、报告无批准、审核、编制人签章无效;报告经任何增删、涂改无效。
- 三、 本报告仅供本项目使用,未经本公司书面同意,其他用途或复印件 均为无效。
- 四、检测结果不受任何行政部门和个人或者其他方面利益的干预。
- 五、 工作人员均受《管理体系》的约束,遵守各项规定的要求,准确、 科学、公正地完成委托的检测任务。
- 六、 为委托单位保守秘密,对其提供的要求保密的资料、样品及检测数据严守机密。
- 七、 未经本公司书面同意不得将本报告内容发表在任何新闻媒体及公 开场合,不得利用本报告进行任何商业运作。
- 八、 自送样品的来样检测, 其结果只对来样负责。
- 九、对不可复现的检测项目,结果仅对检测所代表的时间和空间负责。
- 1、 对检测报告若有疑问,可向本公司提出。

上述声明,请各方面给予监督。

监督电话: 0591-87578101


地址:福建省福州市敦楼区软件大道 89 号福州软件园 D 区 41 号楼 4 层

电话: 0591-87578101 87578202

传真: 0591-87578302 E—mail: fjhqjc@126.com

邮编: 350003

福建去其校侧科技有限责任公司

项目名称,上杭具生活垃圾焚烧发电项目竣工环境保护验收

采样日期; 2024年01月15日~01月16日 分析日期; 2024年01月15日~01月19日

报告日期; 2024年02月04日

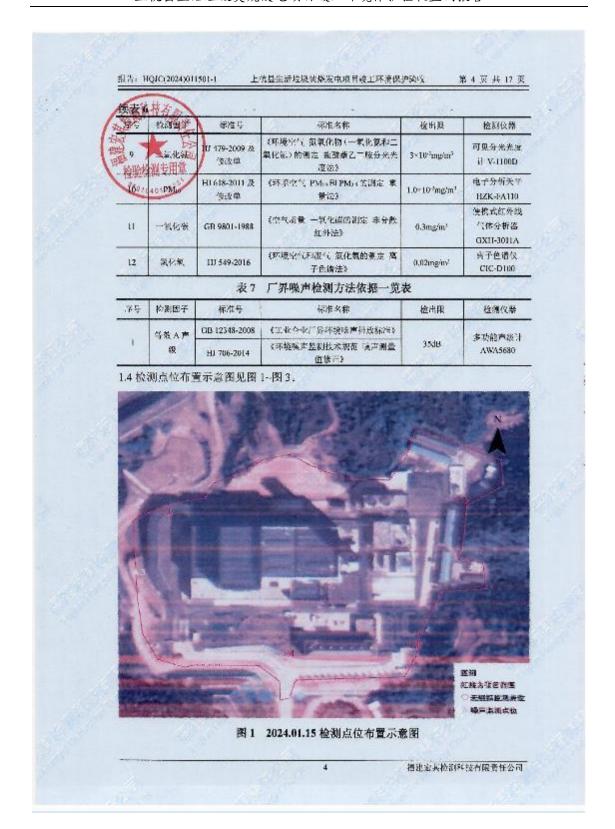
采样地点:福建省龙岩市上杭县临城镇土埔村狮子潭路 10 号

1 检测内容

1.1 无组织废气、敏感点废气、厂界噪声检测点位、因子、频次见表 1~表 3。

表 1 无组织废气检测点位、因子、频次一览表

编号	点位名称	检测因子	采样时时、颜法
OI	项目厂界主风向 (2024.01.15-01.16
O2	项目厂界下风向 2		
O3	项目/ 界下风向 3		1天4次,检测4天
04	项目厂界下风向 4		


表 2 敏感点废气检测点位、因子、频次一览表

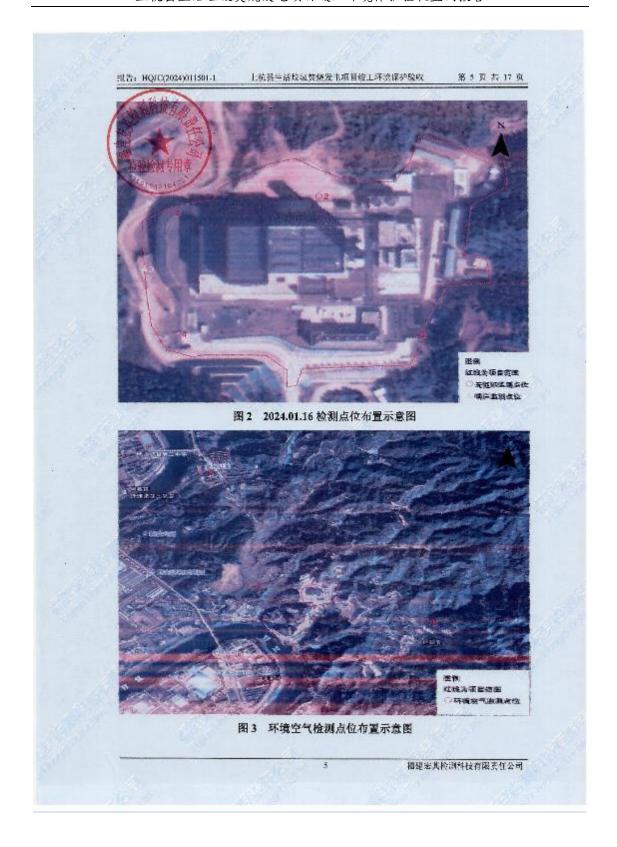

編生	点位年龄	检测因子	采样时间、额次
O5	上枕层板	目均值:颗粒物、PM a、铅、砷、	
O6	百联業	編、二氧化碳、二氧化氮 小时的值: 汞、氮、硫化氮、一氮	2024.01.15-01.16 検測2天
07	土物村	化碳、氯化塑	1

表 3 噪声检测点位、因子、频次一览表

编号	点位名称	检测因了	校制对何、频次
A 1	、 外膜声骤点 1	Lan	
▲2	, 了界域声潮点 2		2024.01.15~01.16 量、夜间各检测 1 次、检测 2 天
▲3	厂界噪声强点 3		

1.27華	語信息		4. 4000	0	- 3
100	*		表 4・样品信息一览表		
100		建工工	样品状态	秤品点	級 (个)
100	21040104	相相放气	照前物建模 52 个。吸收液 64 组。 臭气采气模 32 个。是好能到		128
2	a.	(等点度气	颗粒物、重金风滤瓶6个。PMa 滤脂6个、吸收液84组,汞硫基 排玻附置24个,完好能测		120
1.3 检	测方法依	些见表 5~表 7 .			
		200000000000000000000000000000000000000	无组织废气检测方法依据一数	色校	
序号	检测因子	标准号	拇推名称	松出县	粒調仪器
1	颗粒物	HJ 1263-2022	《环境空气 点悬行辅控物的测定 重量法》	0.168mg/m²	电子天平 SQP 型
2	硫化氢	(空气和液气 蓝侧分析方法》 (第四版增补 版)国家环保息 射线	第三篇 第一章 十一《亚千斯伍分光 光度法》	1×10 ⁻³ eng/en ²	可见公允允缴计 V-1100D
3	9	ID 503-2009	《环境空气和废气 無的到定 幹民試 創分允允废法》	0.01mg/m ²	可见分光光度计 V-1100D
4	臭气软度	HJ 1262-2022	《环境空气和废气 臭气的测定 三点 比较式臭提供》	10 (无最朝)	万臭空气净化装 宣
		表 6		表	1010
序号	检测因子	标准号	标准名称	機出現	检测仪器
1	和較物	HJ 1263-2022	《环境空气 总裁符额检物的黄定 章 概法》	7×10° ang/m²	电子天平 SQP型
2	氣	FJ 533-2009	(环境型气和度气 氨的测定 纳氏试剂分升光度性)	0.01mg/m ³	可见分光光度 计 V-1100D
3	二氧化烷	HJ 482-2009 及 修改单	《环境空气 二氧化度的测定 甲醛吸收、积.积.取规苯胺分光光度法》	4×10 'mg/m ⁵	可见分定光度 排 V-1100D
4	族化氢	(空气环域气度) 海分析方法)(第 四版培补版) 四 家环保息局線	《第二篇 第一章 十 · 亚甲基蓝分 光光度铁》	1×10° mg/m²	可见公元光谱 3] V-1100D
5	铂			6×10 ⁻⁷ mg/m ¹	
- 6	ijd .	HJ 657-2013 及 修次单	《空气和瓷气、颗粒物中铅等金属元 素的测定 电影揭合等离子体灵谱法》	7×10"mg/m"	ICP-MS
7	領	10 ×X 45	のPAMA でのは「中間」でAR単位3	3×10 ⁴ mg/m ²	Agilent 7500 ce
8	*	HJ 542-2009 及 修改单	《环境空气 汞的测定 或基格意集。 冷原子荧光分光光度法(管行)》	6.6×10*mg/m*	智能冷原子炎 光刻汞仪器
		14.21	冷风于灰光片光光 皮化;百行为		ZYG-II

2 脸侧结身 + 2.1 各检测	- Par 1	校8~)。 {8 无组织废气者	测结果一	党表		
· 位验检测专用	JOH!		风水			松訓	直位	
3 給製日期 7540 19 4	放次	風自	m/s	检测因子	01	O2	03	Ö4
				機能物 (mg/m²)	0,183	0.218	0.326	0.216
	4	V. C.		気 (mg/m²)	0.01	0.11	0.07	0.06
	1	NW	1.2	硫化氫 (mg/m²)	<1×10*	5×10*	2×10 ⁻¹	2×10**
		-		臭气浓度(无量浆)	<10	12	- 11	11
				颗粒物 (mg/m²)	0.179	0.240	0.315	0.211
	0257	10.000	9020	(mg/m²)	0.03	0.13	0.07	0.08
	2	NW	1.3	商化生 (mg/m²)	2×10-7	7×10 ⁻²	3×10 ⁻³	4×10 ⁻³
12,200,000		136	139	臭气浓度(无量纲)	11	14	12	13
2024.01.15				颗粒粉 (mg/m³)	0.206	0.238	0.299	0.222
			1.3	征(mg/m³)	0.02	0,14	0.09	0.07
	3	NW		硫化氢 (mg/m²)	1×10 ⁻⁵	7×10×5	4×10 ⁻²	4×10°
				支气浓度 (无量纲)	<10	15	13	12
		11300		類独物 (mg/m*)	0.197	0.266	0.338	0.241
		N 131	1.0	氨 (mg/m²)	0.02	0.10	0.08	0.06
	4	NW	1.4	衛性値 (mg/m³)	2*10*	5×10 ⁻¹	3×10 ⁻³	5×10 ⁻³
			Ī	具气浓度 (无量纸)	<10	н	12	п
-	Las			聚粒物 (mg/m²)	0.190	0.229	0.318	0.204
	1	SE	1.3	氦(ng/m²)	0.02	0.06	0.05	0.09
		SE		蘇松氣 (mg/m²)	<1×10 ⁻¹	2×10°	2×10*	4×10 ⁻¹
				臭气浓度(无量料)	<10	-01	-11	12
				颗粒物 (mg/m ²)	0.195	0.250	0.314	0.220
	2	SE	1.5	M (mg/m³)	0.01	0.08	0.06	0.11
	-	313		就化氢 (mg/m/)	1×10°	5×10°	3×10*	6×10°
2024.01.16				臭气浓度 (无宝纲)	<10	12	12	13
2021.07.10		1		取拉物 (mg/m²)	0.185	0.212	0.313	0.212
	3	SSE	1.5	氮(mg/m²)	<0.01	0.08	0.05	0.10
		100000	555	硫化氢 (mg/m²)	<1×10 ⁹	4×10 ⁻⁵	2×10e2	5×10°
			1	臭气浓度 (无量纲)	<10	13	11	12
			1 2	類粒物 (mg/m ¹)	0.209	0.252	0.294	0.203
	4	SE	1.4	製(mgm²)	0.02	0.07	0.07	0.09
				就化氮(mg/m³)	2×10-1	3×10-3	2*104	5×10°
	1			臭气欲度 (无量纲)	<10	12	12	11
条件	1	Nite	幼果低	十分析力活整出展时,主	复使用的"方征	A检出现",并	加さべて表	示。
						1	No solv	

1	為科技	The same	1	表9 敏感点版	气检测结果	览表	
100		检测 风花		检测因子	-	. 發測点位	
THE STATE OF THE S	40 A	(3)	ands	(a series)	03	O6	07
- 4	THE REAL PROPERTY.	用率v	1.6		0.04	0.02	0.01
	30000000000	WIFE	1.2	*	0.03	0.02	<0.01
	3	NW	1.3	(me/m ³)	0.04	0.01	0.01
	- 1	NW	1.5		0.04	0.01	0.01
	1	NW	1.6		1×10 ⁻³	<1×10/3	<1×10 ⁻⁵
	2	NW	1.2	硫化氮	<1×10 ⁻²	1>10-3	<1×10 ⁻⁵
	3	NW	1,3	(mg/m³)	2×10 ⁻³	<1×10°1	1×10 ⁻⁵
	4	NW	1.5		2×10-1	1×10-3	15-10-5
	1	NW	1,6		<6.6×10 ⁻⁵	< 6.6<10°	<6.6×10 ⁴
	2	NW	1.2	汞	<6.6×10 ⁻⁵	<6.6×10 ⁻⁶	<6.6×10*
	3	NW	1.3	(mg/m ²)	<6.6×10°	<6.6×10 ⁻⁸	<6.6<104
	4	NW	1.5		<6.6×10 ⁻²	<6.6×10 ⁴	<6.6 104
	1	NW	1.6		0.05	0.03	0.03
	2	NW	1.2	氧化氧	0.04	0.03	0.04
	3	NW	1.3	(mg/m²)	0.05	0.05	0.04
2024	k01.15 4	NW	1.5		0.05	0.03	0.04
21124		NW	1.6		0.5	0.6	0.5
	2	N.M.	1.2	- 無化碳 (me/m²)	0.6	0.5	0.5
	3	NW	1.3	+ +	0.5	0,6	0.5
	4	NW	1.5		0.5	0.6	0.5
	1	1	1	二氧化硫(ug/m²) 日均值	ń	8	11
	t	1	7	二氧化氮(ug/m²) 口均值	11	66	15
	1	1	10	和 (ung/m²) 日均值	2.7×10*	7.4×10*	7.5×10*
	1	3	J	獨(mg/m²) 日均值	4.4×10°	4.4×10 ⁻⁷	2.26×10 ⁻⁶
	1	9	×1	部(mg/m²) 日均值	2.8×10+	4.2×10^	3.7×10 ⁴
	-1	1	1	動統物 (mg/m*) 日 均值	0.114	0.098	0.078
- 49	1	1	1	PM _{in} (mg/m²) 日均值	0.035	0.033	0.031
				*			

绒表9	有人						
The same	11 70 7						14 15-7
The same	松烈	000	风速	检测图了		检测点位	
	頻枚	30/	m/s	Textile 1	0.5	06	()7
位担任从	中田	SI	1.5		0.04	0.06	0.02
300:040	0422	SE	1.4	飒	0.01	0.02	0.01
	3	SSE	1.3	(mg/m²)	0.03	0.04	0.04
	4	SE	1.6		0.03	0.03	0.03
	1	SE	1.5	200	2×10/	3×10°	1×10 ⁻³
	2	SE	1.4	前化氢	1×10 ⁻¹	2×10 ⁻²	<1×10 ⁻¹
	3	SSE	1.3	(mg/m ²)	1×10.4	2×10 ⁻⁵	3×10-3
	4	SE	1.6		2×10 ⁻⁷	t×10°	2×10 ⁻⁵
	1	SE	1.5		<6.6×10°	<6.6×10*	<6.6×10 ⁻⁶
	2	SE	1.4	*	<6.6×10°	<6.6×10°	<6.6×10*
	3	SSE	1.3	(mg/m²)	<6.6×10*	<6.6×10 ⁶	<6.6×10 ⁻⁶
	4	SE	Lfi		<6.6×10€	<6.6×10°	<6.6×10°
	1	SE	1.5	A 9	0.05	0.03	0.04
	2	SE	1.4	氧化氮	0.04	0.02	0.04
	3	SSE	1.3	(mg/m³)	0.07	0.03	0.04
	4	SE	1.6		0.05	0.03	0.04
2024.01.16	1	SE	1.5		0.5	0.5	0.4
	2	SE	1.4	-t-16-50 (0.6	0.6	0.5
	3	SSE	1.3	一氧化酸 (mg/m/)—	0.5	0.6	0.5
	4	SE	1.6		0.5	0.5	0.3
	1	1	1	二氧化碳(ng/m²) 日均值	,	7	10
	1	7	Ŧ	二氧化氯(ng/m²) 日均值	19	58	30
	1	1	1	報(mg/m²) E:5位	2.7×10°	2.4×10 ⁻⁶	1.7×10 ⁻⁴
	1	1	1	福 (mg/m²) 均佳	<3×10 ⁻¹	<3×10 ⁴	<3×10 ⁴
	1	1	9	## (mg/m²) 日均值	<7×10²	<7×10°	<7×10°
	t_{2}	1	1	颗粒物 (mg/m²) 引 均值	0.108	0:096	0.078
	1	1	1	PMm (mg/m/): 日均恒	0.053	0.038	0.033
- 条注	1	9	定结员	民低于分析方法检出限	时。报使用的"方法	去检出限5、并加"	<"表示。

振告: HQJC(2024)011501-1 上杭县生活垃圾焚烧发电项目竣工环境保护验收 表 10 / 界噪声检测结果一览表 检测结果 Lan 点位名称 最间 (dB) 夜何 (dB) 激量質 背景值 测量值等于 测量值 背景镇 测量值修正 广苏联卢测点 1 49.2 49.2 2024.01.15 厂界顺声测点 2 45.R 49.0 42 1 **A**3 厂界联市测点3 44,5 43.6 广务吸声测点! Al 47.7 17.7 2024.01.16 **A**2 50.7 18.6 **A**3 厂界喷声溅点3 46.8 17.4 ①广界联声执行《工业企业厂界环境展点排放标准》(GB 12348-2008)中的 3 类标准(基件氧65dB、被 各往

3 检测质量保证

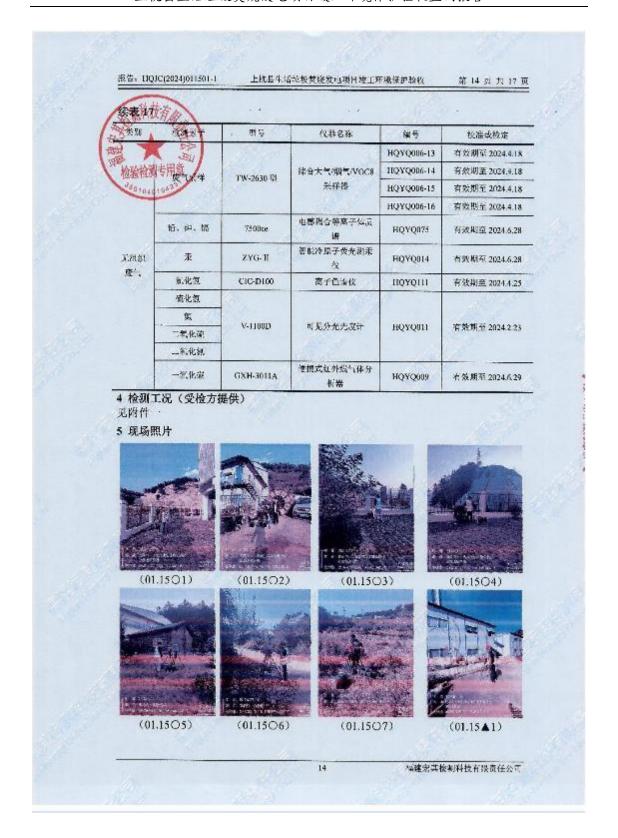
- 3.1 参加采样、检测分析人员均持证上岗。
- 3.2 检测分析仪器均在计量检定有效期内:
- 3.3 检测数据经三级审核;
- 3.4 实验室分析过程按环境检测规范进行质量控制,质控统计结果见表 11-表 17。

表 11 噪声仪质控数据表

日斯	仪聲線号	装量时间	8处性值	声校准签标等声压级	结果	
2024.01.15	97 60	深样前	93.8dB(A)		A 10	
	HOMOORE 3	采样后	93.8dB(A)		合格	
	HQYQ045-3	采拌前	93.8dB(A)	94.0 dB(A)	2.10	
2024.01.16		采拌后	93.8dB(A)		合格	

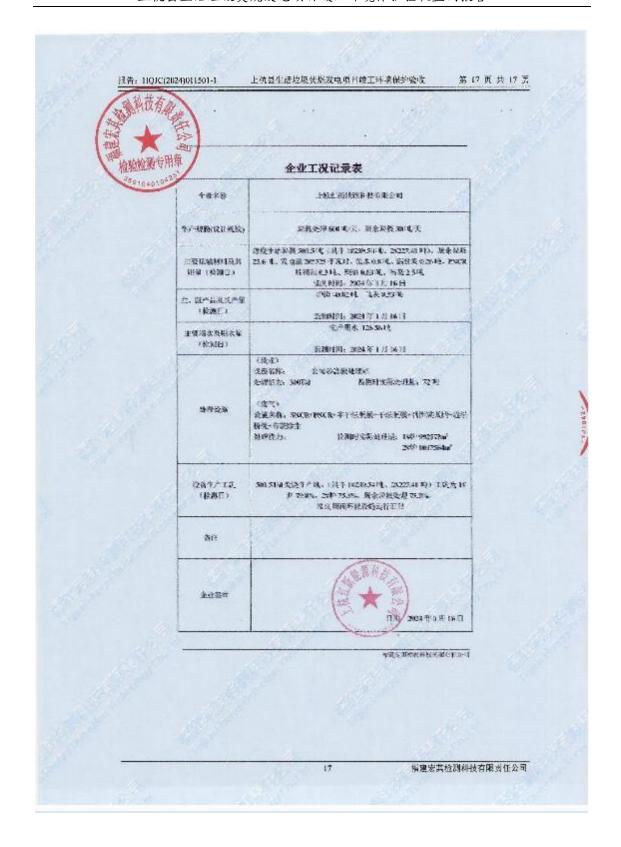
表 12 标准滤膜质控数据汇总表

编号	23	分析时	标准滤源始 量(g)	标准试模 程度 (g)	标准铣膜 称重2(g)	允许确签 (g)	评价
400	IV无组织标准滤痕(A)		0.36057	0.36056	0.36054	<0.00850	今档
14	28无组织标准维膜 (B)	2024.	0.36124	0.36121	0.36118	<0.00050	合档
-	19PMpo标准滤膜(A)	01.17	0.3594	0.3592	0,3590	<0.0005	今档
2*	26 PMn 标准滤款(B)	The Man	0.3619	0.3617	0.3614	00.0005	合档
24	14无组织标准线换(A)		0.36057	0.36051	0.36053	<0.00050	合档
3#	20元组织标准滤膜 (B)	2024.	0.36124	0.36120	0.36123	<0.00050	合格
***	14PMa标准滤液(A)	01 18	0.3594	0.3593	0.3591	<0.0005	合格
44	24 PMn 标准级数 (B)		0.3619	0.3615	0.3613	<0.0005	会位


福建宏具检测科技有限责任公司

	3X 61 11	QICI20	24)011501-1	T.a.	MORALA	极灰魔友也	柳月秋	工环境保护股	1400	第 10 页 共	17 3;
1	南南南	有种	1	表	13 废	气质控监	测结	果表1			
市		経品数(へ)	一个 (下数 下(个)	相对仍然	计价 结果	质的 证书*		标准性 (ug/L)	部(性 (ug/L)	相对误差	评价 结果
11	检验检测	专用	/3	-0.0~1,37	全格	50.00ug 标准湾	/L	50.80	45.7	-8.60	合省
	***	6	3	0.00-11.1	合格	50,000g 物理語	/L	50.00	52.8	5.60	合格
	84	6	3	-1.82 -0.00	合格	50,00kg 标准语	3995	50.00	54.9	9.80	今格
	氧化氢	1	-1	I	7.	B2107041 将 5 倍		73.1±3.2 (mg/L)	14.285 (mg/L)	-3.29	全档
	一氧	,	9	2.4	1	PQ230200	01314	30.4±1.0%	30.8 (mg/m³)	1.32	合格
	化碳							(mg/m³)	31.4 (mg/m ³)	3.28	73.92
	×	1	0.7	1	1	20691	3	0.992± 0.068	0.976 0.982	-1.61 -1.01	合档
				表	14 废	气质控航	测结	果表 2			1
	检测 项目		标准缩	被	tu	标章 (ug)		激定值(ug) jutsel	改字(%)	评价 结果
								1.99	-	19.5	d ^a
	磁化氧		5.00mg/f. 近海 0.40mL			2		1.96		98.0	合格
								1.99	_	98.5 99.0	
	2007		500ng/t	nf.		anali	-	3.3988ng		97.1	
	表	OH!	加标 7	oL	3.5ng		3.3820ng		96.6	合格	
	二氧化		Lümg	T.	0.5			11,469		93.8	合格
	析		加林 0.50	Dmf.						98.3	H TO
	二氧化		2.5mg			0.25		0.245	-	98.0	合格
	- St.		加标 0.10		- 4	气采拌器	Ad- 101- 1	0.232		92.8	
	<u></u>			表1	3 1	(AC)-63-	(X(1H)	nr sk sk			
	校准6	加	仅是	編号	hard the	推仪器 值 L/min	校准等	eig数 nin	(直谈差%	好价结	*
				A %	0	.20	0.2	203	-1.5	合格	
		2	HQYQ006	-5 B 清	. 0	.20	0.2	200	0.0	合格	
	2024.0	- T		凝粒物	10	00.8	95	1.2	0.8	合格	
	(架料	(TR		Λ路	0	120	0.2	203	-1.5	合格	-
		1	HQYQ006		0	.20	0.2	206	-3.0	介格	
		-		類粒物	1)	00.0	10	1.7	-1.7	合格	

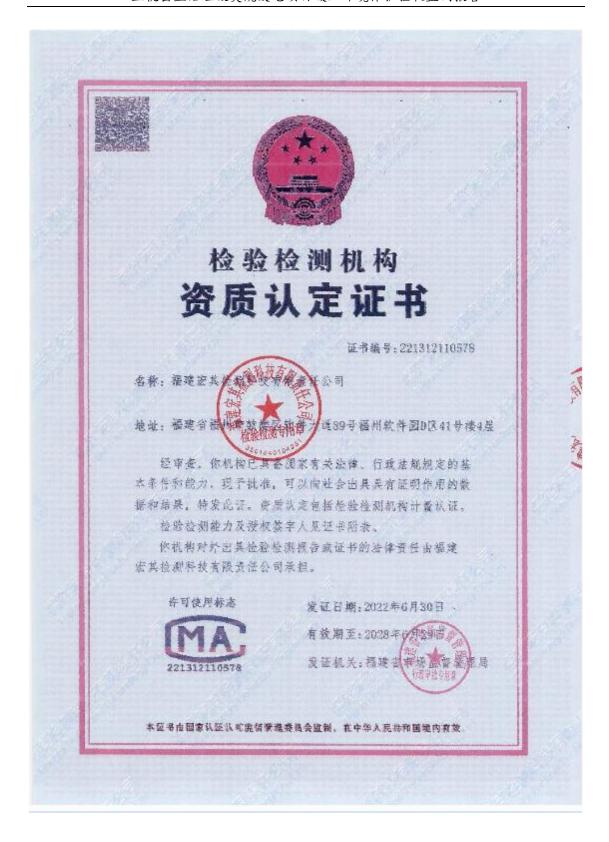

读 表 15					1	- 6
(2)	设	9	被校准收益 济星示位 LAmin	校准器嵌號 Limin	示值误差%	评价结果
Management of the	#/	ABS	1.00	1.023	-2.3	
0010401047	HQYQ006-9	B雅	1.00	1.029	-2.9	合格
		颗粒物	100.0	99.9	0.1	合格
		A 28	1.00	1.006	-0.6	介格
	HQYQ006-10	B腔	1.00	1.012	-1.2	合格
		動物物	100.0	100.2	•0.2	合格
	***************************************	A路	1.00	1.008	-0.8	合格
	HQYQ006-11	B SS	1.00	1.023	-2.3	合格 人物
	7922	和技物 A路	100,8 1.00	99.6	0.4	合格 介格
				0.998	0.2	
	HQYQ006-12	B終	1.00	1.013	-1.3	合格
		颗粒物	100.0	99,8	0.2	合格 一
		AX	00.1	1.027	-2.7	合格
		日路	1.00	1.017	-1.7	含格
2004.04.14	HQYQ006-13	CM	1.00	0.987	1.3	<u> </u>
2024.01.14	1	り路	0.30	9.300	0.0	合格
		颗粒物	100.0	99.9	0.1	台格
		A 26	1.00	1.029	-2.9	介格
		B雞	1.00	1.034	-3.4	台格
	HQYQ006-14	C账	1.00	1.000	0.0	会格
		D略	0.30	0.302	-0.7	台格
		颗粒物	100,0	102.7	-2.7	合格
		AM	1.00	1.017	-1.7	合格
		BE	1.00	1.017	-1.7	合格
	HQYQ006-15	CBS	1.00	1.025	-2.5	合格
		D路	0.30	8.300	0.0	合格
		颗粒物	100.0	101.6	-1.6	合格
		A略	0.20	0.197	1.5	合格
	HQYQ006-16	B路	0.20	0.201	-0.5	合格
	1101000010					台灣
		秘检物	100.0	101.5	-1.5	-


续表 15	THE STATE OF THE S		品生活垃圾灾 烧 发时			第 12 页 共 17 页
中央 中央推时间 1606年间	全田 曹	4	被被准仪器 第显示值 L/min	校准器读数 L/min	不值误差%	评价结果
380.	1725	A路	0.20	0.207	-3.5	合格
380 10001	HQYQ006-5	8階	0.20	0.205	-2.5	合格
		既准物	100.0	102,5	-2.5	合格
		A階	0.20	0.206	-3.0	台格
	HQYQ006-6	B器	0.20	0.204	-2.0	合格
	all I	驱放物	100.0	102.7	-2.7	合格
		A 28	1.00	1.016	-1.6	合格
	HQYQ806-9	B路	1.00	1.006	-0.6	合格
		既治物	100.0	100.3	+0.3	全枠
	1000	A番	1.00	1.025	-2.5	合格
	HQYQ006-10	BA	1.00	1.006	-0.6	合格
	1	颗粒物	100.0	100.1	0.1	台格
		A 28	1.00	1.000	0.0	合格
	HQYQ006-11	B路	1.00	1.017	-1.7	合格
		测粒物	100.0	100,0	0.0	合格
		A野	1.00	0.994	0.6	合格
	HQYQ006-12	8湯	1.00	1.011	-1.1	台格
2024.01.17		颗粒物	100.0	99.6	0.4	台格
(条件后)	4	A 8%	1.00	1,012	-1.2	合格
		BR	1.00	1.017	-1.7	台格
	HQYQ006-13	C.PA	1.00	1,026	-2.6	合格
		DE	0.30	0.301	-0.3	合稿
	100	颗粒物	100.0	99.8	0.2	台格
		A腔	1.00	0.985	1.5	合格
		BR	1.00	1.005	-0.5	合稿
	HQYQ006-14	C路	1.00	1.010	-1.0	合格
		D路	0.30	0,302	-0.7	合格
		動物物	100.0	101.7	-1.7	合格
		AB	1.00	0.985	1.5	合格
		BB	1.00	U.990	1.0	合格
	HQYQ006-15	CB	1.00	0.970	3.0	合格
		D路	0.30	0,300	0.0	合格
		颗粒物	100.0	99.5	0.5	合格
		AX	0.20	0.206	-3.0	合格
	HQYQ006-16	8件	0.20	0.203	-2.5	介格
	1	颗粒物	100.0	99.5	0.5	合格
			12		agentean;	4技有限责任公司

THE WAY	技有企	表 16	检测人员名单一览	表	
4000	上一下	18	证书编号	F/2 (1)	项目
1000 1	· 国	新棋	宏其制字第 006 号	10.2	环境空气架样
	30年出書	进平	宏英侧字第 022 号		废气光样
1910	10 0497 5	书理	运其剩字第 067 号		改气采样
4	隊	全挥	宏英樹字第 071 号	- 噪声	·检测、环境空气采样
5	*	100 / 100 /	宏其漸字第 076 号		环境空气采样
6	14	金加	运其领字第 087 号		废气采样
1		会主	宏其鄉字第 091 号		环境空气采样
8		ELS.	宏其微字第 093 号	-	检测、环杀空气采样
9		仕东	宏其推字第 098 号		环奖空气采样
10		海宇	宏其雅字第 095 号		成气采样
11	-	F66	宏共微字第 005 号		实验分析
12		du č¥	宏洪微字第 007 号	-	实验分析
13	100	新符	定其领字第 018 号	-1070	实验分析
14	1	文游	宏典組字第 031 号		实验分析
15	-	光辉	近其相字第 036 号		实验分析
16	No. of the last of	诗朝	定其測字第 042 号	-	实验分析
17	-	梦 丽	宏英侧字第 045 号	Contract Contract	实验分析
18	4		宏其制字第 062 号		实验分析
19	张	新研	宏英制字第 063 号		实验分析
20	15	星鑫	宏典测字第 077 号	- 18	实验分析
21	9	9±	非 赏制字第 079 号		实验分析
22	#	何意	宏英侧字第 081 号		实验分析
23		FØ	宏其測字第 099 号		实验分析
		表1	7 检测仪器 览表	44	113
类别	检测因子	亚号	仪器名称	報号	校准或後定
-	44 M	AWA5680	多功能声級计	HQYQ045-3	有效概至 2024.12.15
噪声	等效A市级	AWA6221A	半粒准器	1IQYQ049-1	有效 數至 2024.6.5
11 5 11	颗粒物	HZK-FA110	以子分析天平	HQYQ110	育新期至 2024.6.28
				HQYQ006-5	育教舞至 2024.7.1
		暢应 2050	空气智能 TSP 综介	ИОУООО6-6	有效期至 2024.7.1
无组织		107.15	3/6	HQYQ006-9	有数据至 2024.9.19
50年	拔气呆杵	E.	高贵压智能综合系样	HQYQ006-10	有效期至 2024.9.19
	1	ADS-2062G	*	HQYQ006-11	有效期至 2024.9,19
	A PV A			HQYQ006-12	有数期至 2024.9.19
	7.1				
	-		13	100 th 1-10	控制科技有限责任公司

检测报告

报告编号: HQJC (2024) 011501-2


上杭县生活垃圾焚烧发电项目

项目名称: 竣工环境保护验收

委托单位: 上杭紅新能源科技有限公司

检测性质: 委托检测

福建宏其检测科技有限责任公司 签发日期 2024年 02月 04日

报告: HQJC(2024) 011501-2

上抗異生活垃圾焚烧发电项目竣工环境保护检查

新工机共口页

福建宏其检测科技有限责任公司

声 明

验的取售及复制报告未加盖"福建宏其检测科技有限责任公司检验检测 报告专用章"、"MA 专用章"、骑鋒章无效!

- 二、 报告无批准、审核、编制人签章无效;报告经任何增删、涂改无效。
- 三、 本报告仅供本项目使用,未经本公司书面同意,其他用途或复印件 均为无效。
- 四、 检测结果不受任何行政部门和个人或者其他方面利益的干预。
- 五、 工作人员均受《管理体系》的约束,遵守各项规定的要求,准确、 科学、公正地完成委托的检测任务。
- 六、 为委任单位保守秘密,对其提供的要求保密的资料、样品及检测数据严守机密。
- 七、 未经本公司书面同意不得将本报告内容发表在任何新闻媒体及公 开场合,不得利用本报告进行任何商业运作。
- 八、 自送样品的来样检测, 其结果只对来样负责。
- 九、 对不可复现的检测项目,结果仅对检测所代表的时间和空间负责。
- 上、 对检测报告若有疑问,可向本公司提出。

上述声明, 诸各方面给予监督。

监督电话: 0591-87578101

地址:福建省福州市鼓楼区软件大道 89 号福州软件园 D 区 41 号楼 4 层

电话: 0591-87578101 87578202

传真: 0591-87578302

E-mail: fjhqjc@126.com

邮编: 350003

福建宏风枪到科技有限责任公司

报告: HOIC(2024) 014501-2

上杭县生活垃圾焚烧发已项目竣工环境保护验收

第2页数11页

检测报告

國家學		上杭红新能源科技	有限公司
40	福建省龙岩	市上杭县临城镇土	埔村狮子舞路 10号
联系人	郑工	电话	18505089819
邮编	1	传真	1

项目名称。上杭县生活垃圾焚烧发电项目竣工环境保护验收

采样日期: 2024 年 01 月 15 日~01 月 16 日 分析日期: 2024 年 01 月 15 日~01 月 22 日 报告日期: 2024 年 02 月 04 日

采样地点: 福建省龙岩市上杭县临城镇土埔村狮子海路 10 号

1 检测内容

1.1 废水检测点位、因子、频次见表 1。

表1 废水检测点位、因子、频次一览表

籍号	点位名称	检测科子	兴祥时间、横汶
*1	行水处理站进口	pH 值,COD,BODs、SS、氨氮、色皮、	
* 2	污水处理站出口	总额、总额、总法、总额、总额、大价等。 总律、志恒	2024.01.15-01.16。 1 天 4次, 松割 2 天
*3	生活度水料放口	pH / ()、COD、BODs、SS、製器、总製、 动植物油	

1.2 样品信息, 见表 2。

表 2 样品信息一览表

序号	样品类型	样品状态	样品数量(个)
1	坡水	水样 24 个,方好能到	24

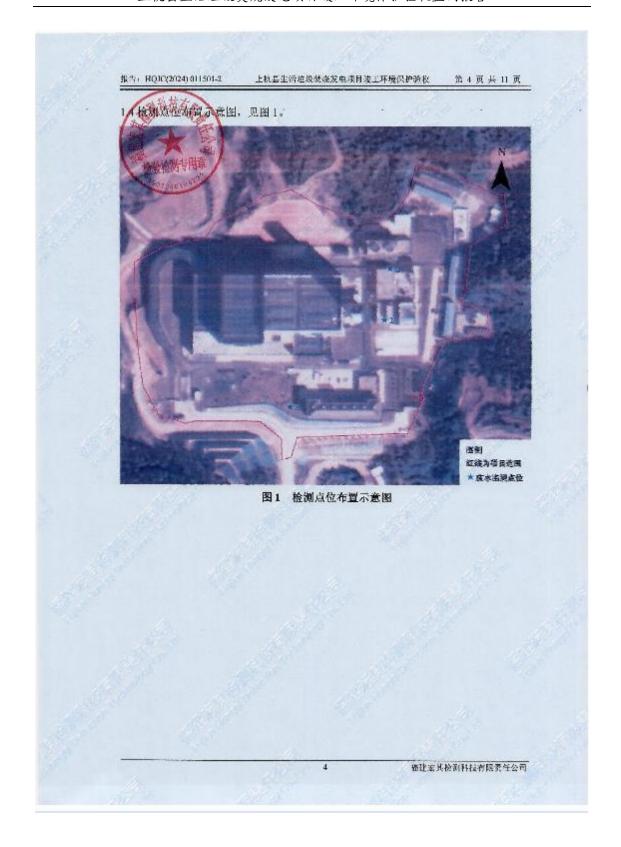

1.3 检测方法依据见表 3。

表 3 废水检测方法依据一览表

序号	拉德因子	标准号	标准名称	检出版	校测仪器	
1	pH 值 113		《水波 pH 值的集定 电拨法》	1	综合水质检测 AZ86031	
2	COD	1U 828-2017	(水质 化学费制量 重铬酸钾法)	4 mg/L	酸式油定省	
3	BOD;	HJ 505-2009	《水质 五日生化需氧量(BODs)的制定 終 释与接种法》	0.5 mg/L	生化培养箱 SPX-150BE	
4	悬行物	GB 11901-1989	《水质 悬污物的测定 重量法》	4 mg/l	电子分析天平 HZK-FA110	

措建宏美检测科技有限责任公司

	10 M	71 (2024) 011	301-2	上就是生活垃圾黄糖发电项目竣工环壳保护链	, , , , , , , , , , , , , , , , , , ,	5 3 天 共 16 天
35	续表3	THE	7	Se d		1
	部段	被测量	标准号	标准名称	检出限	检测仪器
2	2000年	检测表思维	GB 11893-1989	(水底 益緣的新定 有钢铁分光光度法)	0.01 mg/L	繁外/可见分光光 度计 UV-1801
	6	危格	GB 7466-1989	《水质 总铬石制定 高锰酸甲氧化 二苯 (碳酰二阴分片光度法)	4×10 ⁻³ mg/L	爱外可见分光光 度计 UV752
	7.	大价等	GB 7467-1989	《水质 六价钨的测定 二苯磺酸二肼分光 光度法》	4×10 ⁻³ mg/L	版外/可见分光光 度计 UV752
	В	色度	HJ 1182-2021	(八) 仁座的美定 种样传教法)	2 倍	比值管
	9	宏觀	HJ 535-2009	《水质 复氮的测定 纳氏认列分光光度 法》	2.5×10 ⁻⁸ mg/L	紫外/可见分光光 度计 UV752
	10	ä	LD 636-2012	《水馬 总额的测定 碱性过碳酸锌清解钠 外分光光度蚀》	0.05 mg/L	素外/可见分类处 度计 UV-1801
	п	海湖	GB 7485-1987	《水历·总种的测定 二乙基二氧代氨基甲 酸银分光光度法》	7×10 ⁻¹ mg/L	業外/可見分光光 度计 UV-1801
	12	表示	HJ 597-2011	《水语 总录的测定 冷原子吸收分光光度 法》	1×10° mg1.	冷原子吸收到汞仪 P732-V1
	13	总额	《水和废水 特别分析方	(第三篇 第四章 七(四)石墨炉原子吸收法3	1.0×10 ⁻¹ mg/L	
	14	息许	法》(第四版 增补版)区 家环保总局 编	《第三篇 第四章 十六(五)石墨於原子 吸收法》	1×10° mg/L	石墨炉原子吸收分 光光度计 TA\$920G
	15	动植物油	HI 637-2018	《水质 石油类和动植物油类的测定 紅外 分光光度法》	0,06 mg/L	紅外分光無准位 OIL480

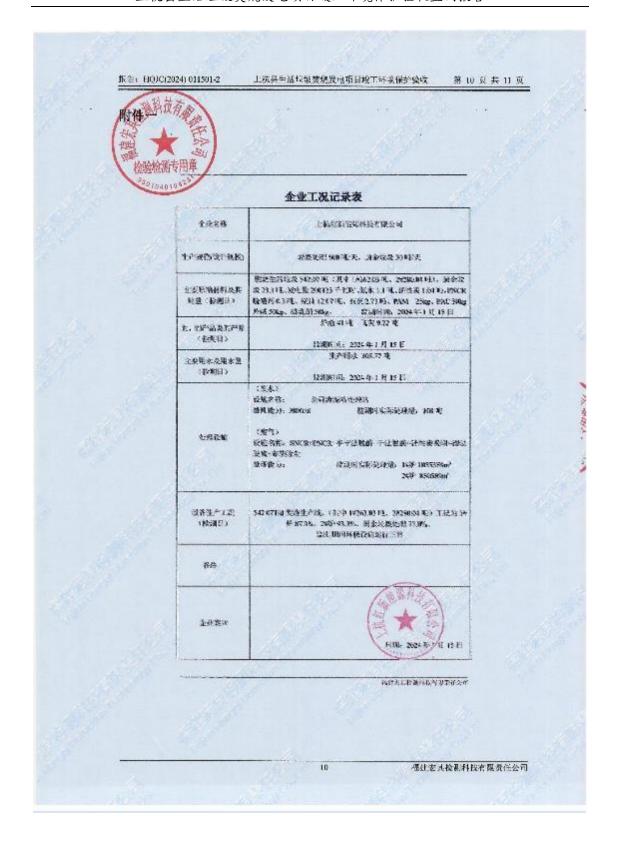
6.5	划结果 划结果克茨 分别专用章).	表 4 废水	检测结果	一览表			
C MI	力性名称	检测项目			检测频次			单位
To a series		1.78	1	2	3	1	均值或范围	00
		水温	23.5	24.2	24.7	23.9	/	°C.
		pH包	7.1	7.2	7.2	7,1	7,1-7.2	无量纲
		SS	8.60×10°	8.43×10°	8.62×10°	9.01×10²	8.66×10 ⁵	mg/L
-2.50		COD	3.11×10°	3.08×10 ⁴	3.15×10 ⁴	3.21×10	3.14×10 ⁴	mg/L
		BOD.	1.36×10 ⁴	1.38×10 ⁴	1,40×10*	1,44×10 ²	1.40×101	mg/L
	1	总额	40.6	48,5	45.6	43.7	44.6	ang/L
5	*1	总统	5.2×10 ⁻²	7.0×10 ⁻²	5.9×10 ⁻²	7.2×10 ⁻²	6.3×10 ⁻²	mg/L
	污水处理站	大价等	3.0×10 ⁻²	4.7×10 ⁻²	3.7×10 ⁻²	4.2×10-2	3.9×10°	mg/L
	进口	色度	400	400	400	400	1	倍
		気源	1.27×10 ¹	990	1.13×10 ³	1.07<10 ³	1.12×10 ³	mg/I.
		总集	2.44×10 ³	3.29×10 ³	2.70×10 ³	2.38×10 ²	2.45×10 ⁵	mg/f.
		总碑	1.6×10 ⁻²	1.4×10 ⁻²	1,5×10 ⁻²	3.5×10 ⁻⁰	1.5×10°2	mg/L
		总末	1×10°L	1×10°L	1×10*1.	1×10°L	1×10°L	mg/L
		点編	4.34×10 ⁻¹	3.81×10 ⁻³	4.49×10 ⁻¹	3.64×10 ⁻³	4.07×10 ⁻⁵	mg/L
2024.		总针	1.7×10 ⁻²	1.5×10-2	1.4×10 ⁻²	1.6×10 ⁻²	1.6×10-2	mg/l.
01.15		水湿	31.8	31.5	32.3	31.4	1	°C
		pH fit	7.0	7.0	6.9	6.8	6.8-7.0	无世细
		58	-17	19	15	16	17	mg/L
		COD	11	10	10	9	10	mg/L
		ROD ₅	3,6	3.3	3.1	2.9	3.2	mg/L
		若練	0.09	0.12	0.08	0.11	0.10	mg/L
	★2	总符	4×10°L	4×10°L	1×10°L	4×10 ⁻¹ L	t>10°L	mg/L
	污水处理站	大价格	4×10°L	4×10 ⁻⁵ L	4×10 ⁻³ L	4×10°L	4×10-5L	mg/L
	出口	色度	2	2	2	2	1	任
		概算	4.1×10 ⁻²	0.147	6.4×10 ⁻²	9.6×10 ⁻²	8.7×10 ⁻²	mgL
		总統	29.2	28.2	26.4	27.3	27.8	mg/L
	100	- 基礎	7×10*L	7×10°L	7×10°L	7×10°L	7×10°L	mg/L
		章	1×10 ⁴ L	1×10 ⁴ L	1×10°L	1×10/5L	1×10°L	mg/L
		总領	3.1×10-4	2.9~104	4.2×10 ⁻⁴	2.2×10-1	3.1×10 ⁻⁴	mg/L
		总铅	3×10-5	2=10-3	2×(0 ⁻¹	3×10 ⁻³	2×10 ⁻⁵	mg/L
	No.	4100	SECOND CO.	11122-103	Sellin III 63	art Miles		No.

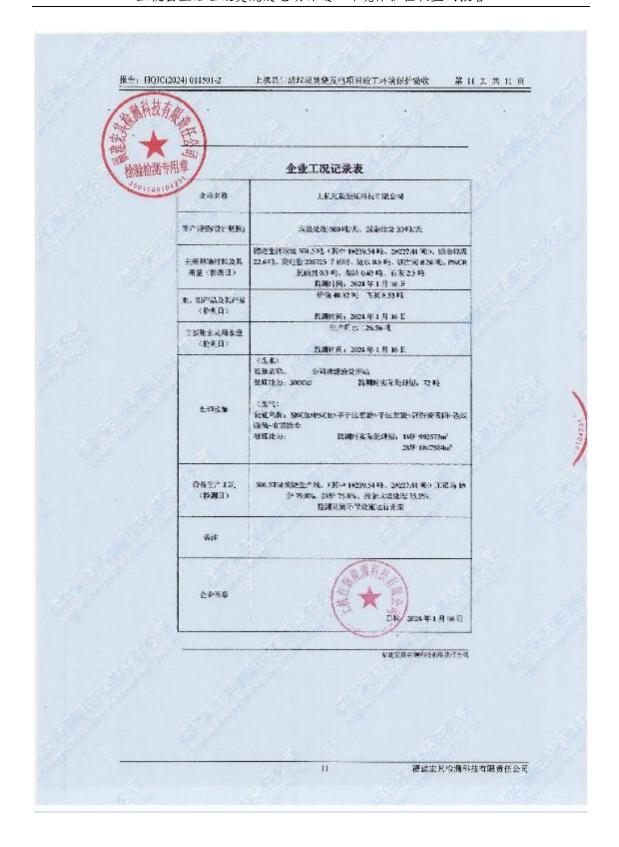
	有周							4.0
外异社	1		10		检测额次	7.6		
一种	点位名称	检验项目	1.	2	3	4	均值或直面	单位
SANGANIA SANGANIA	時用章	水溢	21.4	21.5	22.3	21.4	l,	°C
The section of	019-13	pt1 lt	8.1	7.9	8.0	8.0	7.9-8.1	无量纲
24	0110	SS	44	43	41	46	44	mg/L
2024.	*3	COD	200	190	208	202	200	mg/L
01.15 生	活度水排	BOD,	80.4	76.4	82.0	77.4	79.0	mg/l.
1	3.0	总牌	4.05	5.87	5.68	4.52	5.03	mg/L
		氨級	38.8	35.5	40.9	42.1	39.3	mg/L
		动植物油	1.76	1.75	1.78	1,81	1.78	mg/L
	-	水温	21.4	21.9	22.3	22.0	1	÷C
		pH位	7.0	7.2	7.2	7.1	7,0-7,2	无量钢
5		SS	9.12×10 ²	8.51×103	8.70×10 ³	8.93×10°	8.82~103	mg/L
		COD	3.22×10 ⁴	3.12×10 ⁴	3.18×10 ⁴	3.25×10 ⁴	3.19×10 ⁴	mg/L
	200	BODs	1.42×10 ⁴	1.41×10 ^a	1.41×10°	1.45×10*	1.42×10 ⁴	mg/L
	8	基瞬	47.8	42.7	43.4	45.6	44.9	mg/L
	1	温馨	7.5×10 ⁻²	5.5×10	7.2×10 ⁻²	7.1×10 ⁻²	6.8×10 ⁻²	mg/L
75	污水处理的 进口	六学祭	4.8×10°	3.5×10°	4.3×10 ⁻⁷	4.5×10 ⁻⁴	4.3×10 ⁻¹	mg/L
		色性	400	400	400	400	1.4	倍
3,00		福和	1.21×10 ⁵	1.03×10 ³	1.08×10 ³	1.04×10 ²	1.09×10 ³	mg/L
		总额	2.27×10 ²	2.10×10 ³	2,49×10 ³	2.57×10 ²	2.36×10°	mg/f.
		总统	1.7×10 ⁻²	1.5×10 ⁻²	1.4×10 ⁻²	1.5×10 ⁻³	1.5×10 ⁻²	mg/L
2024. 01.16		总汞	1×10/5L	1×10°E	1×10 ³ L	1×10 ⁻³ L	1×10 ⁻⁹ L	mg/L
		直接	4.69×10°	4.96×10°	4.38×10°	4.64*10*	4.67×10 ⁻¹	mgl
W		总价	1.7×10-2	1.6×10-2	1.4×10 ⁻¹	1.6×10 ⁻²	1.6×10 ⁻²	mg/L
- 37		水温	28.6	29,1	29.6	28.9	1	°C
		pH 他	6.7	6.9	6.7	6.7	6.7-6.9	无世纲
		SS	18	16	14	15	16	mg/L
		C00	10	8	10	8	9	mg/L
40	★2 水处理站	BOD ₅	3.5	3.8	3.2	2.6	3.3	mg/f.
	出口	总牌	0.11	0.13	0.11	0.09	0.11	mg/L
- W. H	3	总格	4×10°L	4×10 ⁻⁵ L	4×10 ⁻³ L	4×10 ⁻³ L	4×10 ⁻³ L	mg/L
		大价格	4×10°L	4×10°L	4×10°L	4×10"L	4×10°L	mg/L
		色度	2	2	2	2	1	俗
8		製製	\$.4×10 ⁻²	0,339	0.144	0.121	0.147	mg/I

出杭县生活垃圾焚烧发电项目竣工环境保护趋权 第7页共日页 检测频次 会测术目 2 3 均值或范围 Z.A 27.8 26.8 27.2 28.3 27.5 mg/L 前 7×10°L 7910°L 7×10°L 7×10³L 7×10-L mg/L 污水处理结 1×10 %. 為汞 1×10°1 1-10%. 1×10 %. 1×10 %. mg/L 83 6% 3.6×10⁻⁴ 5.0×10⁻¹ 3.0×10-4 2.4×104 3.5×10⁺ mg/L 总铅 4×10⁻³ 3×103 3×10-3 2×10-3 3×10² mg/L 水油 20.7 21.0 21.4 21.1 30 2024. 7.9 pH 惊 8.0 8.0 7.9 7.9-8.0 元量到 01.16 47 SS 49 46 47 mg/L COD 192 210 205 200 mg/L 生活成水形 BOD 86.6 82.8 91.3 87.4 mg/L 放口 总辑 4.14 4.03 4.53 5.58 4.37 mg/L 気気、 36.6 42.9 46.2 39.1 39.7 mg/L 动植物油 1.69 1.88 1.80 1.75 1.78 mg/L 测定结果似于分析方法校当限时,接使用的"方法检出限",并加标志位"L"表示。 备往

3 检测质量保证

- 3.1参加采样、检测分析人员均持证上岗;
- 3.2 检测分析仪器均在计量检定有效则内:
- 3.3 检测数据经三级审核;
- 3.4 实验室分析过程按环境检测规范进行质量控制见表 5-表 8。


表5 检测人员名单一览表

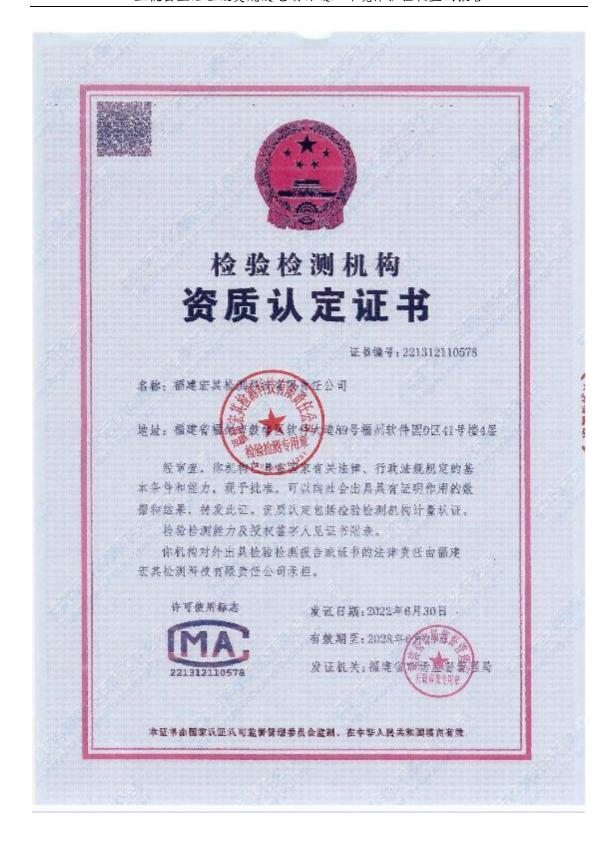

序号	姓名	证书繪号	类别
1	芬登 粹	宏英侧字第 085 号	版水架符
2	能江 东	宏英侧字第 094 号	废水采样
3	相秀地	定長割字第040号	实验分析
4		宏天衡字第 042 号	实验分析
3	杨妙丽	宏兵調字第 045 号	实验分析
6	罗思云	宏其劉字第 072 号	实验分析
7	新星產	宏其訓字第 077 号	实验分析
8	章信鑫	宏其調字第 081 号	实验分析
9 -	卓能 体	宏共制学第 097 号	实验分析
10	工材	宏共調字第 099 号	实验分析

福建宏其检测科技有限责任公司

	Cath.	技有級		表6	检测仪器	一览表	100		
	李俊新	松光切		- 천号	校器	名称	编号	拉推蛛	会定
	神 一			AZ86031	综合水区	70-90E0X	HQYQ033-3	有效期至 30	24.9.24
	(CE	利夫別美OD (10美俗字(10		50m1.	較大器		HQBL008	有熟期至20	
	位的相	3 4		SPX-150BE				有效期至 20	-
	05010	The second secon			生化均		HQYQ016		
		S		HZK-FA110	电子分	机大 "	11QYQ118	有效期至 20	24.2.23
	废水	無能、总		UV-752	蒙外/可光分	分光光度计	HQYQ012-2	有效期至20	24.12.2
	46	总额、总	凯、总种	UV-1801	紫外/可见分	分光光度计	DQYQ012	有效期至20	24.2.23
		1%	汞	F732-VJ	冷原子吸	收割汞仪	HQYQ066	有效期至 20	24.6.28
		कार्य	物油	Off.480	红外分类	的制油仪	HQYQ001	有禁期至 33	24.6.28
		总链、总链		TA5990G	右臺原子吸的	分光光度计	HQYQ00Z	有效期至 20	24.7.3
			19	表7 2	水质质控数	据汇总表 1		100	
	松創項目	样品数	平行 拌数	相对确签 (%)	派控样 任书号	标准值 或使用液液 度(mg/L)	幾定情 (mg/L)	相利 误差 (%)	评价结果
	100			1/38 25		7.44±0.05	7.49 〈无址纸〉	0.67	J#19
	pH性	24	2	0.00	B23020247	(万量到)	7.49 (无世纲)	0.67	介格
	-	-				100	53.2	3.30	200
		192		100000000000000000000000000000000000000	2001162	51.5±3.2	52.9	2.72	食格
	COD	24	6	-5.26-4.76	rangood.	23.5±1.175	22.7	-3.40	A 19
	-	1	1000		5737384	23.421.172	22.7	-3.40	合格
	non	24		-4.10-3.49	荷的精-华家	210=20	223	6.19	合格
	BOD:	24	4	4.10-3.49	电标序消线		222	5.71	
	总铸	21		5 00 0 00	23DA0173	1.50.0.00	1.63	3.16	60
	All Sep	24	6	-5.880.99	230/10173	1.58±0.08	1.57	-0.63	67
	总络	16	4	-1,92-0,00	B22040171	0.976±0.073	0.964	-1.23	合格
	-C 50	100		1176-0100	DECOTOTICE	01270401013	0.986	1.02	11.46
	六使轮	16	4	-1.64-0.00	B22070225	5.32±0.24	0.271	1.88	合格
	-				(新経20倍)	200000000	0.275	3.38	100
	宏复	21	6	-1.82-3.53	B22040235	17.7±0.8	3.59	£41	合格
	-		-		(務條5倍)		3.56	0.56	4
	10.00	16	4	+1.39-1.45	B22030202 (経経2倍)	10.2=0.5	5.12	1.18	合格
					COST 2 III /	44,4=3,2	0.0446	0.45	-
	总种	16	4	0.00	200460	(ug·L)	0.0437	-1.58	合格
	总销	16	4	-3.57-8.82	A7L1 (飛痒25倍)	0.159±0.005	6.505ug/L	2.28	合植

检测报告

报告编号: HQJC (2024) 011501-3


上杭县生活垃圾焚烧发电项目

项目名称: 竣工环境保护验收

委托单位: 上杭红新能源科技有限公司

检测性质: 委托检测

福建宏其检测科技有限责任公司 签发日期 2024年02月04日

2 HOJC(2024)011501-

上抗县生活垃圾焚烧发电项目竣工环境保护验收

第 1 页共 25 美

福建宏其检测科技有限责任公司

声明

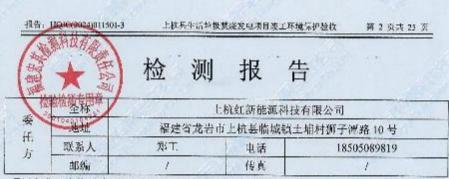
*41046·报告及复制报告未加盖"福建宏其检测科技有限责任公司检验检测

报告专用章"、" MA 专用章"、骑缝章无效!

- 二、 报告无批准、审核、编制人签章无效,报告经任何增测、涂改无效。
- 三、 本报告仅供本项目使用,未经本公司书面同意,其他用途或复印件 均为无效。
- 四、 检测结果不受任何行政部门和个人或者其他方面利益的干预。
- 五、工作人员均受《管理体系》的约束,遵守各项规定的要求,准确、 科学、公正地完成委托的检测任务。
- 六、 为委托单位保守秘密,对其提供的要求保密的资料、样品及检测数据严守机密。
- 七、 未经本公司书面同意不得将本报告内容发表在任何新闻媒体及公 开场合,不得利用本报告进行任何商业运作。
- 八、 白送样品的来样检测, 其结果只对来样负责。
- 九、 对不可复现的检测项目,结果仅对检测所代表的时间和空间负责。
- 十、 对检测报告若有疑问,可向木公司提出。

上述声明, 请各方面给予监督。

监督电话: 0591-87578101


地址:福建省福州市载楼区软件大道 89 号福州软件园 D 区 41 号楼 4 层

电话: 0591-87578101 87578202

传真: 0591-87578302 E—mail: fjhqjc@126.com

邮编: 350003

福建宏其检测科技有限责任公司

项目名称:上杭县生活垃圾焚烧发电项目竣工环境保护验收

采样日期: 2024年01月15日--01月18日 分析日期: 2024年01月16日--01月19日

报告日期: 2024年02月04日

采样地点,福建省龙岩市上杭县临城镇土埔村狮子潭路 10 号

1 检测内容

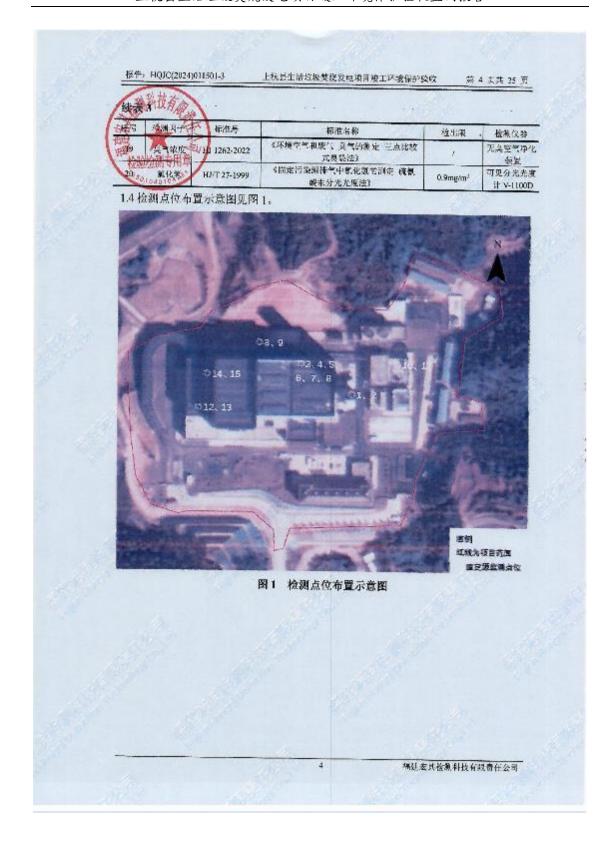

1.1 有组织废气检测点位、因子、频次见表 1.

表 1 有组织废气检测点位、因子、频次一览表

繰写	点攸名称	检测因于	采样时间、京次
21	15荧烧泸排放口	颗粒物、二氧化硫、创氧化物、一	2
32	25焚烧办非坡口	氧化碳、氟化氧、汞及其化合物。 镉、铊及其化合物、锑、砷、铂、 俗、钴、粗、锡、级及其化合物	
03	と矢仓拝气筒	2.32	2024.01.15~01.16
04	石灰仓排气筒!	- A 10"	1天3次,检测2天
03	石灰仓排气第2	斯松地	
96	活性类合并气管	- 20	
97	水泥仓排气筒		
08	8.英智存库处理 畏縮进口		Marin .
09	飞灰整存库处理设施出口	颗粒地	
6210	渗滤液处理站波气处理设施进口		
(911	渗滤液处积站废气处理设施出口	至化银、银、具气浓度	2024.01.17-01.18
012	餐廳垃圾事改处建設施进口		1天3次。检测2天
C13	餐厨垃圾事改处还设施进口	荀化領、蜀、臭气浓度	
©14	应急除臭处现设施进口		
6515	应急除果处理设施进口	新北溟、恒、吳气浓度	

福建宏其检测科技有限责任公司

报告: HOJC(2024)018501-3 上就是至新垃圾装烧发电项目竣工环境保护验收 第 3 页共 25 页 2 样品信息见表 ·表 2 样品信息一览表 始退击田晋平司公至 样品状态 样品总数(个) 静电袋(采样头)54个,吸收液96 到定愿接气 组。重金周续值 12 个,奥代采气袋 36 198 个。完好能到 1.3 检测方法依据见表 3. 表 3 有组织废气检测方法依据一览表 序号 检测因子 标准号 标准名称 检出银 檢測仪器 《固定污染物度气 低浓度颗粒物的测定 电子天平 颗粒物 1 HJ 836-2017 $1.0 \, \mathrm{mg/m^3}$ 重量決3 SQP 3 《固定污染效度气,量氧化物的测定 定电 NO: 3mg/m3 2 HJ 693-2014 位电解法》 NO₂: 3mg/m² 《固定污染漆废气 二氧化烷的集定 定点 饭侬度划尘 3 SO HJ 57-2017 Jung/m3 (气) 凝试仪 TW-32000 型 位生解法》 《固定污染领接气 一氧化鞣的测定 定电 一氧化碳 4 HJ 973-2018 3mg/m³ 位电解法》 《空气和废气路 制分析方法宣第 可见分光光度 5 使化氢 第五篇 第四章 一《汉甲基蓝分光光度续》 2.5×10 3mg/m3 四版增补版) 寅 分 V-1100D 家环保总网络 《环境空气和整气 氢的测定 纳氏试剂分 可见分光光度 6 氮 HJ 533-2009 0.25mg/m² 光光度法》 il: V-1100D 汞及其化合 《固定污染观察气 汞的测定 冷原子吸收 冷果子吸收到 7 HJ 543-2009 $2.5 \times 10^{-3} \text{mg/m}^3$ 分光米度法 (智行)》 **承校 F732-VI** 锡及其化合 8 8×10⁻⁵mg/m³ 种及其化合 9 2×104mg/m² 461 锡及其化合 10 3×10"mg/m1 帽及其化台 11 2×10⁻⁴mg/m³ 物 製及其化台 12 1×10/4mg/m² 《空气和波气 颗粒物中帕等金属元素的 电话动合等类 铜及其化合 13 HJ 657-2013 制定 电燃耦合等离子体质情法》及像改单 2×10 mg/m3 子体质谱仪 物 (生态环境部公告 2018 年第31号) 7500ce 锰及其化合 14 7×10 fmg/m* 物 钻及其化台 15 8×104mg/m³ 能及其化合 16 3×10 mg/m3 络及其化合 17 3×10 ling/m3 物 锑及其化合 18 2×10⁻⁵mg/m³ 3 福建宏其检测科技有级责任公司

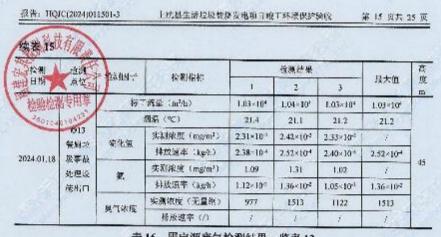
Sept.	海 始验检制专	果庭 4-表	6.	检测结果	·览表1			
	(利) 整體。	检测因子	检测推标	100	检测结果		十均值	高廉
_	00 000			1	2	3		m
	1 . 76		克量 (m²/h)	4.15>181	4.14×10*	3.75×10 [#]	4.01×10 ⁴	
		-	(量 (%)	8.1	9,1	8.8	8.7	1
			# (*C)	141.7	143,7	142.7	142.7	
		络及其化合物	突側恢復(mg/m²)	4.67×10 ⁻²	4.44×10 ⁻²	6.21×10°	5.11×10 ⁻²	100
		領点其化合物 体が其他合物	安测浓度(mg/m²)	5.30×10°	3.62×10 ⁻³	3.66×10-1	4.19<10-1	
		学及其化合物 煤及其化合物	失測体度 (mg/m*)	2.03×10 ⁻⁴	2.98×10 ⁴	1.11×10 ⁴	2.04×10*4	
		能及其化合物	实到浓度(mg/m²)	3.4×101	1.2×10°	2.0×10 ⁻⁷	2.2×10 ⁻¹	
	-66	 	实制液度(mg/m²) 实制液度(mg/m²)	1.7×10 ⁻¹	1.6×10°	1.4×103	1.6×10 ⁻³	-
		维及共化合物	安徽浓度(mg/m²)	4.71×10 ⁻²	3.96×10 ⁻² 1.98×10 ⁻³	3.09×10 ⁻²	3.92×10 ⁻²	10
	91	常及其化合物	実現依度(mg/m²)	1.93×10° ³ 2.9×10° ³		1.31×10*	1.74×10 ⁻³	
	24. I#16/444	5格、群、泉、结、 锑、铜、铝、镍	实测浓度 (mg/m*)	0.109	1.4×10 ⁻³ 9.41×10 ⁻²	2.4×10° 0.104	2.2×10 ⁻¹	0
	15		折算浓度 (mg/m²)	8.45×10°	7,90×10 ⁻²	8.53×10 ⁻²	0.102	0
		及具化合物(以 Sb+As+Pb+Cr+C o-Cu+Mn+Ni 计)		1	1	6.33×10-	8.29×10 ⁻² 4.09×10 ⁻³	
	1000	能及其化合物	实测核度(mg/m²)	2.17×10 ⁴	1.12×10~	7.0×10-5	1.334104	
		维及其化合物	实测帐座(mg/m*)	6.9×10 ⁻⁵	3.2×10r3	<8×10.5	3.5×10°	1969
		傷、能及其化	实测练度(mg/m²)	2.86 - 10-4	1.44×10 ⁻⁴	7.0×10*	1.68×10 ⁻⁴	
		合物(以Cd+T)	折算旅班(ma/m²)	2.22>10~	1,21×10 ⁻⁴	5.7×105	1,37×10 ⁻⁴	
		it)	排放原本(kg/h)	1	1	1	6.74×10 ⁻⁵	
			实测浓度(mg/m*)	<2.5×10 ⁻³	<2.5×10 ⁴	~2.5×10 ⁴	<2.5×10 ⁻²	
		汞及其化合物	折算浓度(mg/m²)	<1.9×10 ⁻¹	<2.1×10 ⁻³	<2.0<101	<2.0×10 ⁻³	
	1		排放速率 (kgh)	1	1	1	<1.00×10*	- 1
							6	

	MA	的 在 在	劉				6 天共 25	-			
	和	- BUTTL	海加 国子 检测技术			检测结果			a		
	企业	验检修传	開章	松棚技術	1	2	3	平均值	皮血		
	1	80106010	47年	流量(m ³ /h)	4.17×10°	4.28×10 ⁴	3,87×10 ⁴	4.11×10 ⁴	-		
			वे	類星 (%)	9,0	8.3	8.9	8.7	1		
			华	提 (%)	140.9	143.6	142.8	142.4	1		
		1 39		実護袜度 (mg/m²)	1.8	1,6	1.5	1.6			
			机轮收	折算橡度(mg/m²)	1.5	1.3	1.2	1.3			
				种放速率(kg/h)	7	1	1	6.58×10°			
				实测浓度(mg/m²)	1	4	<3	3	1		
		3040	二氧化磷	折算浓度(mg/m²)	3	3	<3	2			
	2021.	(本統領的	3.00	排放速率(kg/h)	1	1	1.0	0.123	1		
	01.15	特赦日	120	实侧浓度(mg/m³)	78	133	66	92	0		
			测氧化物	研修物度(mg/m²)	65	105	55	75	1		
				排放速率 (kg/h)	1	1	1	3.78	1		
				实测核度(mg/m²)	3	<3	<3	<3			
			領化黨	折算浓度 (mg/m))	<2	<2	<2	<2	7		
			150	排放送率(kgh)	1	1	7	< 0.123			
			製化器	实制序度(mg/m³)	10.1	8.8	10.3	9.7			
				折算器度(mg/m²)	8.4	6.9	8.5	7.9			
				排放资本(kg/h)	- 1	1	1	0.399			
	全 全										
4	911		\$	5 固定源废气	企测结果 -	- 览表 2	2 100	1			
	松制	检测	I Carriera de	2		检测结果			高		
A.	日期	点位	校测因子	检测指标	1	2	3	平均值	度加		
			bic干8	₹量(m²/b)	4.25×10 ⁴	3.78×10*	4/25×10 ⁴	4.09×104			
		6	含年	(金 (%)	9.8	8.4	7.8	8.7			
			.54	8 (°C)	150.4	150.9	154.9	152.1			
	2024.	@ 2	络及其化合物	突集体度 (rug/m²)	4.67×1(r ²	5.40×10 ⁻⁶	5.10×10-2	5.06×10°2	1		
	01.15	海炎療道 排放口	智及其化合物	实测核度(mg/m²)	3.28×10 ⁻³	3.18×10 ⁹	4.15×10°	3.54×10 ⁻⁹	0		
			化及其化合物	安測浓度 (mg/m²)	7.7~10*	8.8×10°	9.0×10 ⁴	8.5×10 ⁻³	0		
			煤及人化合物	实现旅座(mg/m²)	1.3×10×	1.6×10-1	1.5×10 ⁻³	1.5×10 ⁻⁸			
			谢及其化合物	实製漆度(mg/m³)	1.5×10 ⁻²	1.5×10 ⁻³	1.3×10-3	1.4×10 5			
- 1			4	10				Marie Control	_		

建 表 8	為技术		727	+				
- 松瀬	431	检区因子	检测技术		检测结果	201	平均值	度
The state of the s	TA PAINT	静及其化合物		-1	2	3	120	m
位数	同例可	种及男化合物	实施浓度(cng/m²)	3.45×10°	2.994103	3.28×10°	3.24×10 ⁻²	
	1040104	和及其化合物	实测浓度 (mg/m²)	1.73×100	1.62×10 ⁻⁴	1.35×10 ⁻¹	1.57×10 ⁻²	
		8、种、和、钴、	实训练度 (mg/m ³) 实训练度 (mg/m ³)	1,9×10-5	1.3×10 ⁻³	2.1×10 ⁻²	1.6×10 ³	
		等、细、惺、健及	Control of the Paris of	9.04×10-2	9.32×10+	9.43×10 ⁻²	9.27×10-1	
		执化合物(以	pra-tack /mgm.)	\$.07×10 ⁻²	7.40×10 ⁻³	7.15×10 ⁻²	7.54×10 ⁻²	3
		Sb+As +Po+Cr+Cn+Cu+ Mn+Ni ††)	排放进伞(kg/h)	1	1	,	3.79×10 ⁻³	
		海及其化合物	实测浓度(mg/m²)	6.19105	5.9×10 ⁻¹	4.6×10 ⁴	5.5=10-5	
4		给及其化合物	实测浓度 (mg/m')	<8×10*	1.1×105	<8×10°	<8×10-6	
		铜、能及其化	实测效度(mg/m²)	6.1×10 ⁻⁹	7.0×10-5	4.6×10 ⁻⁵	5.5×10 ⁻⁶	
	. 4	今物 (以	折算效度 (mg/m/)	5.4×10 ⁻⁸	5.6×10 ⁻⁵	3.5×10 ⁻⁵	4.5×10°	
		Cd+Tl (†)	排放途率(kg/h)	1	1	/_X	2.25×10°	
4			李測級度(mg/m²)	*2.5×10 ⁻⁵	<2.5×10 ⁻⁵	<2.5×10 *	<2.5×10 ⁻¹	1
(8%)		非及其化合物	折算浓度 (mg/m ¹)	<3.2×10 ⁴	<2.0×10 ⁻¹	<1.9×10 ⁻²	<2.0×10*	
2024	692		排放汽車(kg/h)	1	- 1	f	<1.02×10 ⁻⁴	1
01.15	26雙流炉		量(統領)	4.64×104	4.17×10 ⁴	3.85×10 ⁴	4.22×10 ⁴	0
	排放日		(並 (%)	8.6	8.7	7.2	8.2	U
		416	£ (°C)	149.1	149.5	149.8	149.5	
	10	颗粒物	安無效度(mg/m²)	<1.0	<1.0	<1.0	<1.0	
		4844.630	好算冰度(mg/m²)	<0.8	<0.8	<0.7	<0.8	
25	300		排放速率(kg/h) 实制浓度(mg/m/)	- /	- t	1	<4.22×10-2	
-		二氧化磷	折算浓度(mg/m³)	14	3	-3	7	
			排放建築(kg/h)	10	<2	<2	6	
		- 350	实制体度(nig/m³)	45	52	83	<0.295	
		面包化物	折賽被度(mg/m²)	36	42	60	60	
			排放建牢 (kg/h)	1	1	7	2.53	
	9.		支別冰度(mg/m²)	-3	3	K3	<3.33	
-		17 20 10 10 10 10 10 10	折算來度 (mg/m²)	2	<2	<2	<2	
- 30	17		带放速率(ksh)	7	7	7	<0.127	
			突侧按度 (mg/m³)	5.1	4.3	4.4	4.6	
100		氟化敏	折算浓度(mg/m³)	4.1	3.5	3.2	3.6	
3 4		A PARTY	排散連率(kg/h)	et.	7	7 /	0.194	
3t (D焚烧炉	基准含氧量为 119	%;②測定結果低于分	听方法检出版			37、并加"<"	ti
	K				10-1-17			150

1	NA PROPERTY.	技有		表 6 固定源废气	.检测结果	览表3		第 8 页头:	
1 2 3 1-948 1-				Mariting 1		檢測結果		17 Am (d)	高
「大きな	一些	AA	200			2	3	TVAIR	n
(元) (元	松轮位	制专图	神		-		1.56<103	1.54×10 ³	
	38010	S. S. A.	£)		-	-		39.4	2
おり おり おり おり おり おり おり おり		100	前 原形物			-		1000]
対数性 (元) 21.9 23.6 24.3 23.3 1 23.6 24.3 23.3 1 23.6 24.3 23.3 1 23.6 24.0		1	- Apr	The state of the s	-	-	-	-	
1		1000	1		-		-		
持敗漢章(kgh)		7 (0.00)	RSS	The second secon	-		-		13
2024.01.15 不存在性		7,8	1 30 独物					-	1
2024.01.15 T級合語		1	40-	and the second s	-	-			
(1) (1	2024.01.15	103	5		-		-		
特別 特別 特別 特別 特別 大田 132 327 333 334 332 327 333 334 332 327 333 333 334 332 327 333 333 334 332 327 333 333 334 332 327 333 333 334 332 327 333 333 334 334 332 327 333 333 334 334 332 327 333 334 33	2024.01.15	3,000	371	Therese	-		-	-	18
株理報 (元) 19.9 20.5 20.8 20.4 15日度金 20.5 19.9 20.5 20.8 20.4 15日度金 20.5 20.8 20.4 20.5 20.5 20.8 20.4 20.5 20.5 20.8 20.4 20.5 20		To be	1.4 10000170	排放速率 (kg/h)		-	-	Tradeolic	
特性 接続 接続 接続 大調液度 (mg/m²) 18.		-	tw?	·液盘 (m³/h)	340	-	7000		-
持气管 翻軟物 失過效度 (mg/m²) 1.8 1.5 1.8 1.7 1.5 1.6 1.7 1.5 1.6 1.7 1.5 1.6 1.7 1.5 1.8 1.7 1.5 1.8 1.7 1.5 1.8 1.7 1.5 1.8 1.7 1.5 1.8 1.7 1.5 1.8 1.7 1.5 1.8 1.7 1.5 1.8 1.7 1.5 1.8 1.7 1.5 1.5 1.8 1.7 1.5		1000		斑道 (*C)	19,9	20.5	-		
		1000000	200	実獨核度(mg/m²)	1.8	1.5	1.8	-	15
対応合理 対応を表現で 24.2 24.6 24.5 24.		No.	9/1/100	排放速率 (kgh)	- (1	1	5.66*10*	
対議会社 実験被し (mg/m²) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		66	7	'洗量 (m//h)	721	871	935	842	10
名音 製物物 突動液度 (mg/m²) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		1.000		想意(°C)	24.2	24.6	24.6	24.5	
		No.		The state of the s	<1.0	<1.0	<1.0	<1.0	15
表 7 固定源度气检测结果一览表 4 检测 技術 检测因子 检测指标 检测结果 3	77.5	-				The second second second			
校報 校報 校報 校別因子 校別指标 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3	M/T		747年36日	Charles and the second second second	Annual Park Control of the Control o	-	"。并加"<"	表示	
日期 点位 松別因子 検測指移 1 2 3 2.50億 減 m		-8	₹	7 固定源废气	检测结果	一览表 4			
1 2 3 m m m m m m m m m			松别因子	日子 校創指标		检测结果		52.17.00	高
含製造 (%) 9.3 8.3 8.6 8.7	Q/F 5	9.位		Jan 1980	ı	2	3	PAR	加加
対域(化)			杨于 8	を歌(m½h)	3.99×10f	4.15×10 ⁴	4.04<10	4.06×10 ⁴	
契値(代) 145.2 143.3 143.7 144.1 145.2 143.3 143.7 144.1 145.2 143.3 143.7 144.1 145.2 14	.0		含年	(強)	9.3	8.3	8.6	8.7	
2024, 01.16		-	1.4	\$4 (*C).	145.2	143.3			
2024. 01.16 14 及民化合物 实到浓度 (mg/m²) 8.66×10° 4.64×10° 2.42×10° 5.24×10° 1 技 英原伊 体放口 (mg/m²) 3.78×10° 2.04×10° 9.8×10° 2.27×10° 0 银及天化合物 实到浓度 (mg/m²) 5.2×10° 2.8×10° 1.6×10° 3.2×10° 0 恒及民化合物 实测浓度 (mg/m²) 6.2×10° 3.4×10° 1.69×10° 8.8×10° 中及民化合物 实测浓度 (mg/m²) 8.55×10° 4.72×10° 2.26×10° 5.18×10° 4.62×10° 4.72×10° 2.26×10° 5.18×10° 4.72×10° 4.64×10° 4.64×10° 4.72×10° 4.72×10° 4.72×10° 4.72×10° 4.72×10° 4.72×10° 4.72×10° 4.72×10° 4.72×10° 4.72×10° 4.72×10° 4.64×10° 4.64×10° 4.72×10° 4.64×10° 4.72×10° 4.64×10° 4.64×10° 4.64×10° 4.72×10° 4.64×10°		1	省及其化合物	安潤浓度(mg/m²)					
2024. 01.16 1a 技能學 結及其化合物 集制後度 (mg/m²) 3.78×10⁴ 2.04×10⁴ 9.8×10⁴ 2.27×10² 0		0 1	经及其化合物		8.66×10 ⁻³	-			
排放口 製及汽化合物 安侧改变 (mg/m²) 5.2×10° 2.8×10° 1.6×10° 3.2×10° 0 恒及其化合物 安侧浓度 (mg/m²) 6.2×10° 3.4×10° 1.69×10° 8.8×10° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2024. lat	Section 1	枯及其化合物						1
情及其化合物 安瀬浓度 (mg/m²)	Q1.10-1	COLORDINA.							
	A							-	
● 株及其化合物 次割核度 (mg/m²) 2.67×10 ⁻¹ 1.46×10 ⁻¹ 1.18×10 ⁻¹ 1.77×10 ⁻²	9773								
AST STANDARD CONTRACTOR AND ADDRESS OF THE STANDARD STAND		-			-				
13×10° 12×10° (6×10°			***************************************	SCHOOLS CHINE	101111111111111111111111111111111111111	-			
	300		经万利公会物	White the Comments		1 2 - 100	1.2×10/2	1 6x 106	

续表7	為技有	4						
检测	松湖	是別因子	检测析标		检测结果		平均值	高皮
40,00	EASTER!	(四) 新春時 新、佑、	abraulation of the second	1	2	.3	200	m
和	阿洲 耳	所。 10、 指、 锋		0.165	9.38×10 ⁻³	9.92×10 ⁴	0.119	
	7020406	及其化合物(以	折算浓度 (mg/m*)	0.14(7.38×10 ⁻¹	8.00×10 ⁻³	9.67×10*2	
		Sb: As+Pb-Cr-Co+C u+Mn+N; it)	排放建率(kg·h)	3,	I.	7	4.83×10 ⁻⁴	
		绍及其化合物	实制象度(mg/m²)	6.8×10°	1.9×105	2.4×10 ⁴	3.7×10 ⁻⁶	
-2.2		較及其化合物	实制浓度(mg/m³)	<8×10*	<8×10 ⁴	<8×10-6	<8×10*	1.5
100		饰、铭及其化	实制率度 (mg/m²)	6.8×10 ⁵	1.9×10-9	2.4×10 ⁻⁸	3.7×10°	
		合物(以Cd+n	新洋旅渡(mg/m*)	5.8×10 ⁻⁹	1.5×10 ⁻³	1.9=103	3.0×10 ⁻⁸	
		排1	排放短率(kg/h)	1	t	T	1.50×10 ⁻⁸	
		A STATE OF	实测浓度(mg/m²)	<2.5×10*	<2.5×10 ⁻³	×2.5×10 ⁻³	<2.5×10 ³	
		汞及其化合物	折算效度(mg/m²)	<2.1×10°	<2.0×10-3	<2.0×10 ⁻³	<2.0×10 ⁻³	
			排放速率(kg/h)	- 1	1	- 1	<1.02×10 ⁻⁴	1
		梯十號	(量 (m%h)	4.49×10 ⁴	4.03×10°	4.25×10 ⁴	4.26×10 ²	1
2024.	31		(量 (%)	9.0	8.8	8.4	8.7	1
01.16	P女操护 型选用	348	R (3C)	142.5	143.6	140,7	142.3	0
40.00	排放口		实领轨度(mg/m²)	<1.0	<1.0	<1.0	<1.0	0
		素粒物	折算執度(mg/mi)	<0.8	<0.8	<0.8	<0.8	
	73		排放速率 (kg/h)	1	1	1	<4.26=10-2	
-			実測浓度(mg/m²)	<3	3	<3	ব	1929
19		二氧化碳	折算依度(mg/m¹)	<3	2	<2	<2	
			排放速率(kg/h)	- 1		/	<0.128	
		46.2 / / / / / / / /	突測液度 (mg/m²)	113	99	71	94	
4		製氧化物	折算液度(mg/m³)	94	81	56	76	
		-	排放速率(kg/h) 空測液度(mg/m²)	J.I	1	1	4.00	
	/	一類化路		4	- 3	4	<3	
	Col	一氧化鉄	折算浓度(mg/m*) 抖-放速率(kg/h)	-2	<2	. <2	<2 120	S. Y.
			安海浓度(mg/m²)	9.5	8.8	9.5	<0.128 9.3	1
400		領化包	折算浓度(mg/m²)	7.9	7.2	7.5	7.6	
440			非故愿率(kg/h)	1	1	1	0.396	
	0)焚烧分	第准含氧量为11	%。②测定结果低于分	No. of the last of			A TOWN OF THE REAL PROPERTY.	1
	示							100


	**************************************	₹8 固定源废气	企测结果 -	一览表 5			
	企 测 — 最初因子	校制指标		检测结果		平均使	高度
一品製物質	制章	ter en insti-	1	2	1	TAIL	m
25010401	(0.4.1.2) 株十年	公章(m³/h)	4.56×104	4.40<104	4.82×10°	4.59×104	
	合:	美量(%)	9.0	8.9	9.5	9.1	
	網	盟 (%)	145.1	147.6	150.8	147.8	
	络及其化合物	实测体度(mg/m²)	1.53×10 ⁻²	1.50×10°	1.06×10 ⁻²	1,36×10-2	1
19	狂及其化合物	实别单度(majnul)	1.25×10 ⁻²	1.30×10 ⁻³	7.01×10 ⁻⁴	1,08×10-2	
18 3	华及其化合物	支制橡皮 (mg/m²)	2.46×10 ⁻⁴	1.01×10*	1.35×10 ⁴	4.64×10-4	10
	镍及其化合电	实例故度(mg/m²)	2.3×10 ⁻²	1.22×10-3	1.3×10 ⁻⁾	5.3×10-5	148
	钥及其化合物	实例体度(mg/m²)	4.0>10-2	2.39×10 ⁻²	3.8×10 ³	1,06×10 ⁻²	
	种及其化合物	尖刻冰度 (mg/m ¹)	9.08×10 ⁻²	5,49×10 ⁻²	4.93×10 ⁻¹	6.50~10-2	
39	锑及其化合物	李烈浓度(mg/m²)	5.14×10 ⁻¹	4.01×10 ⁻¹	3.95×10 ⁻²	4.37×10-5	
2024.	※ 2 學及其化合物	实别体度(mg/m²)	9.5×10 3	9.6<10*	3.7×10 ⁻³	7.6×10 ⁻³	1
01.16	龙龙炉路、针、带、铁、		0.140	0.134	7.98×10 ⁻²	0.118	0
#	放口 锑、锡、锰、镍 及类化合物 (以	1. 新界級度(manne)	0.117	0.111	6.94×10°	9,59×10-2	0
4.7	Sb+As+Pb Cr C o+Cn+Mn+Ni i+	排放速率(kg/b)	1	T	9	5.42×10°	
	弱反其化合物	李训练者(mg/m³)	1.44×10-4	2.10×1024	1.33×10 ⁻⁴	1,62 - 10-4	
	能及其化合物	李凯萍度 (mg/m²)	3.2×10°	3.6×10 5	1.9×10 ⁻⁵	2.9×10 ⁻⁵	
	器, 能及其化	实测浓度(mg/m²)	1.8>10+	2.5×10 ^{-a}	1.5×10*	1.9×10 ⁻⁴	
	台物(以 Ca+Ti	折算浓度 (mg/m²)	3.5×10+	2.1×10 ⁻⁴	1.3×10+	1,6×10-4	
	ii)	排放電率(kg/k)	1	1	1	8.72×10*	
		实制浓度(mg/m³)	<2.5×10°	<2.5×10°	<2.5×10°	<2.5×10°	1
100	汞及其化合物	折算浓度(mg/m³)	<2.1×10 ⁻³	<2.1×10 ⁻¹	<2.2×10 ⁺	<2.1×10 ³	1
Car I		抖放這辈(kg/k)	1	1	1	<1.15×10*	

计模型		1							
1000	EN S	拉州田子	检测者标		检测结果		平均值	高度	
	70(4)			1	2	3		m	
/ 检验	態写用平	粉干!	(m ² /h)	4.52×10*	4,91×10°	4.74×10 ⁴	4.72×10 ²		
3100	10104	音	八量 (%)	8.6	8.2	9,1	8.6		
	2	準	温 (*C)	143.3	148.6	149.3	147.1		
	100		实测效度(mg/m ¹)	<1.0	<1,8	<1.0	<1.0		
		頓粒物	折算浓度(mg/m²)	<0.8	<0.8	<0.8	<0.8		
			排放速率(kg/h)	1	1	1	<4.72×10 ²		
			実務依据(mg/m²)	<3	3	4	3		
35	Ø2	二氧化酶	折算被度(mg/m²)	<2	2	3	2		
2024. 25	焚龙炉	Bu	样放建率(kg/h)	J.	J	1	0.142	0	
01.16	H放口		实到浓度(mg/m³)	58	50	49	52	0	
		氨氢化物	新算旅度 (mg/m¹)	47	39	41	42		
	1	11	排放速率(kg/h)	1	1	. K	2.45		
			李刚苯胺(mg/m²)	<3	<3	5	-3		
	1	一氧化碳	折算浓度(mg/mi)	<2	<2	4	<2	1	
y 197	5	-	排放建字 (kg/h)	1.	1	10	< 0.142		
050			实现浓度(mg/m²)	6.5	6.6	6.9	6.7	1	
P 181		氯化氧	折算核度 (mg/m²)	5.2	5.2	5,8	5.4		
			排放速率(kg/h)	1	7		0.316	30	
松准	松割		長9 固定源废气机	金測结果-	一览表 6			高度	
日期	自 化	检测因子	檢測指标	1	2	3	平均性	m	
		1 54	A F流量(mがli)	1.57×10 ³	1.69×10 ³	1.87×10°	1.71×10 ³		
	63	-	版键 (5C)	38.3	39.6	40.1	39.3		
	273,570		实确浓度(mg/m*)	1.3	1.5	1.3	1.4	21	
	以灰仓井	颗粒物		-	1	1	2.39×10 ⁻³		
	2000	#14x-40	建筑速率 (ke/h)	1		All the second second second	-		
	以灰仓井	1000		533	720	625	928		
	以灰仓井	柳	- 新量(m³/h)	533	720 21.2	625 24.5	626 21.8		
2024.01, 16	8.灰仓排 气管 9.1 石灰仓排	₩-	- 新星 (m ³ h) 類型 (PC)	533 19.7	21.2	24.5	21.8	15	
	8.东仓排 气管 294	₩-	- 新量(m ² h) 類型(² C) 突測核度(mg/m ²)	533 19.7 2.7	21.2 3.1	24.5 4.4	21.8	15	
	8.灰仓排 气管 9.1 石灰仓排	校- 取拉柏	- 就量 (m²/h) 類型 (℃) 安期終度 (mg/m²) 非數通率 (kg/h)	533 19.7 2.7	21.2 3.1	24.5 4.4 /	21.8 3.4 2.13×10 ⁻³	15	
	8次仓排 气度 24 在灰仓排 气筒 1	版: 取迹物 标:	一部量 (m³h) 類型 (°C) 実測的度 (mg/m³) 非敏速率 (kgh) P液量 (m³h)	533 19.7 2.7 /	21.2 3.1 /	24.5 4.4 / 164	21.8 3.4 2.13×10 ⁻³ 136	15	
	8次仓本 气管 201 不灰仓 气管 1 05 百灰仓	100 to 10	新星 (m ³ h) 模型 (¹ C) 実制終度 (mg/m ³) 排散通率 (kg·h) 下液量 (m ³ h) 源温 (¹ C)	533 19.7 2.7 / 174 28.9	21.2 3.1 / 129 28.9	24.5 4.4	21.8 3.4 2.13×10 ⁻³ 136 28.8		
	8次仓排 气度 24 在灰仓排 气筒 1	100 to 10	一部量 (m³h) 類型 (°C) 実測的度 (mg/m³) 非敏速率 (kgh) P液量 (m³h)	533 19.7 2.7 /	21.2 3.1 /	24.5 4.4 / 164	21.8 3.4 2.13×10 ⁻³ 136	15	

续表9	拉有原	1							
一种	松雅 点位:	2 测度子	检测指标	1	检制结果		平均值	简	
A SHARE	洲卡用草	1 15	下流量 (mbh)	369	372	340	360	h	
2805	海岸灰仓		烟运 (SC)	16.4	17.8	18.9	17.7	-	
	排气管	C. C	实测效度 (mg/m²)	<1.0	<1.0	<1.0	<1.0	1:	
2024 01 14	217 4 791	類解物	持放遵率(kg/h)	1	1	1	<3.60×104	-	
2024.01.16	723.4	歇	干液量 (m²/h)	855	956	919	910		
	07		年提 (*C)	18.7	18.5	19.2	18.8		
	水泥企排	MONTH AL	突測效度(mg/m²)	<1.0	<1.0	<t.0< td=""><td><1.0</td><td>15</td></t.0<>	<1.0	15	
	114	颗粒物	排放速率 (kg/h)	1	2 1	1	<9.10×10+		
	28	称	F衛量 (ei/h)	1.66×10*	1.69×10 ⁴	1.77×10 ⁴	1.71×10 ⁴		
	医灰鳖存	24 J. T.	樹盆 (℃)	14.0	15.6	17.3	15.6		
	库处理设	颗粒物	实制浓度 (mg/m ¹)	1.8	1.5	1.6	1.6	1	
2024.01.17	推进自	PM407.(9)	并放逐率(kg/h)	1	1	1	1		
2024.01.11	09	标	- 新華 (m ¹ /h)	1.60×10 ⁴	1.55×10 ⁴	1.58×10 ^a	1.58×10 ⁴	1	
	飞灰暂存		類混 (°C)	13.3	14.5	17.1	15.0	1.	
	库处理设	颗粒物	安测浓度(mg/m²)	<1.0	<1.0	<1.0	<1.0	10	
	施出口	20174-00	排放速率(kg/h)	1	1	1	<1.58×10 ⁻²		
各注		制定结	果低于分析方法校由限	时,报使用危	广方法检出界	(*),并加"<"	"表示		
		4	In Herman	BANNI AT HE	We the		100000000000000000000000000000000000000		
No.		- 0	210 固定源废气	加州结果	一见表 7				
校測	检测	1		在例如米	一 処 衣 / 松別結果	360			
校灣 日期	检测 点位	推測人丁	· 由是你及飞	1		2.3	最大值	度	
		检测点子		3	检测结束	3 3.84×10 ³	最大值 3.74×10 ²	度	
	点位 @10 線速液	推测人子 标用	检测桥标	1	检测结果 2			度	
	点位 910 総建液 处理址	推测人子 标用		1 3.56×10 ²	检测结果 2 3.83×10 ²	3.84×10 ²	3.74=10 ²	度 m	
	点位 ②10 渗滤液 处理处 皮气处	推測因子 标刊		1 3.56×10 ³ 25.8	检测结果 2 3.83×10 ² 24.4	3.84×10 ³ 27.0	3.74=10 ² 25.7	度	
	点位 910 総建液 处理址	检测点子 标刊 硫化氮		1 3.56×10 ² 25.8 0.142	を到結束 2 3.83×10 ⁹ 24.4 5.64×10 ²	3.84×10 ³ 27.0 6.92×10 ⁻³	3.74±10 ² 25.7 0.142	度加	
	点位 10 総違液 处理址 度气处 王设施	推測因子 标刊 新化图 氨 臭气体度		1 3.56×10 ³ 25.8 0.142 7.28	2 3.83×10 ² 24.4 5.64×10 ² 5.17 3548	3.84×10 ³ 27.0 6.92×10 ³ 5.59 4168	3.74×10 ² 25.7 0.142 7.28 4786	高度 m	
	点位 ●10 総建版 处理处 度气处 王设施 进口	推議点了 标刊 新化氢 氨 吳气泽度		1 3.56×10 ³ 25.8 0.142 7.28 4786	をおける第 2 3.83×10 ⁹ 24.4 5.64×10 ² 5.17	3.84×10 ² 27.0 6.92×10 ⁻² 3.59	3.74±10 ² 25.7 0.142 7.28 4786 4.11×10 ³	度 m	
口 類	点位 10 総違液 处理址 度气处 王设施	推測五丁 标刊 新化氢 氨 兒气体度		1 3.56×10 ³ 25.8 0.142 7.28 4786 3.66×10 ³	を到結束 2 3.83×10 ² 24.4 5.64×10 ² 5.17 3548 4.17×10 ²	3.84×10 ³ 27.0 6.92×10 ⁻² 3.59 4168 4.51×10 ⁵	3.74×10 ² 25.7 0.142 7.28 4786	皮加	
日 類	点位 ●10 総建液 佐理址 度气处 平设施 进口	推議点了 标刊 新化氢 氨 吳气泽度		1 3.56×10 ³ 25.8 0.142 7.28 4786 3.66×10 ³ 29.4	2 3.83×10 ² 24.4 5.64×10 ² 5.17 3548 4.17×10 ² 28.2	3.84×10 ³ 27.0 6.92×10 ³ 5.59 4168 4.51×10 ³ 30.2	3.74×10 ² 25.7 0.142 7.28 4786 4.31×10 ² 29.3	皮加	
- 日頻	点位 ●10 総建液 处理处 度气处 进口 ●311 後後液	推議五子 标化型 签 吳气沫度 标十		1 3.56×10 ³ 25.8 0.142 7.28 4786 3.63×10 ³ 29.4 4.18×10 ⁻²	2 3.83×10 ² 24.4 5.64×10 ² 5.17 3548 4.17×10 ² 28.2 2.80×10 ⁻²	3.84×10 ³ 27.0 6.92×10 ³ 3.59 4168 4.51×10 ³ 30.2 1.86×10 ³ 8.39×10 ⁴	3.74×10 ² 25.7 0.142 7.28 4786 4.11×10 ² 29.3 /	皮加	
- 日頻	点也 参10 渗滤液 处理处 度气处 于设施 进口 参滤液 处理处 度气处 进口 参滤液 使气处 进口 参滤液 使气处 进口 参滤液 使气处 进口 参滤液 使气处 进口 参滤液 使气处 使性 使性 使性 使性 使性 使性 使性 使性 使性 使性	推測五丁 标刊 新化氢 氨 兒气体度		1 3.56×10 ¹ 25.8 0.142 7.28 4786 3.65×10 ¹ 29.4 4.18×10 ⁻² 1.53×10 ⁻¹	2 3.83×10 ² 24.4 5.64×10 ² 5.17 3548 4.17×10 ⁵ 28.2 2.80×10 ⁴ 8.34×10 ⁵	3.84×10 ³ 27.0 6.92×10 ⁻³ 5.59 4168 4.51×10 ³ 30.2 1.86×10 ⁻³	3.74×10 ² 25.7 0.142 7.28 4786 4.31×10 ³ 29.3 /	度加	
- 日頻	点也 ②10 渝建版 处理处 度气处 进口 ③11 渝建版 处理处 使气处 进口	推測五丁 标子 新化医 鉴 臭气体皮 标子		1 3.56×10 ³ 25.8 0.142 7.28 4786 3.66×10 ³ 29.4 4.18×10 ⁻² 1.53×10 ⁻³ 2.31	2 3.83×10 ² 24.4 5.64×10 ² 5.17 3548 4.17×10 ² 28.2 2.00×10 ⁴ 8.34×10 ² 1.48	3.84×10 ⁴ 27.0 6.92×10 ⁴ 3.59 4168 4.51×10 ⁴ 30.2 1.86×10 ⁴ 2.12	3.74×10 ² 25.7 0.142 7.28 4786 4.11×10 ² 29.3 /	度 加	
- 日頻	点也 参10 渗滤液 处理处 度气处 于设施 进口 参滤液 处理处 度气处 进口 参滤液 使气处 进口 参滤液 使气处 进口 参滤液 使气处 进口 参滤液 使气处 进口 参滤液 使气处 使性 使性 使性 使性 使性 使性 使性 使性 使性 使性	推議五子 标化型 签 吳气沫度 标十		1 3.56×10 ³ 25.8 0.142 7.28 4786 3.66×10 ³ 29.4 4.18×10 ⁻² 1.53×10 ⁻³ 2.31 8.43×10 ⁻³	2 3.83×10 ² 24.4 5.64×10 ² 5.17 3548 4.17×10 ² 28.2 2.80×10 ⁻³ 8.34×10 ⁻³ 1.48 6.17×10 ⁻³	3.84×10 ³ 27.0 6.92×10 ³ 3.59 4168 4.51×10 ³ 30.2 1.86×10 ³ 8.39×10 ³ 2.12 9.56×10 ³	3.74×10 ² 25.7 0.142 7.28 4786 4.31×10 ³ 29.3 / 1.53×10 ⁴ / 9.56×10 ⁵	度加	

100	1 0	1	长11 固定源度与	位则结果		4		
· 经过日!		企測因子	检测指标	-	检测结果		以大位	高度
12 HOY	· · · · · · · · · · · · · · · · · · ·	/ ta:	干流量(mi/h)	1.44×10 ⁴	1.38×10°	3	171117	m
1/250	TO SO THE SAME	100	烟混 (%)	18.3	20.2	1.11×10 ⁴	1.31×10°	
	投事故	鞍化氢	实制体度 (mg/m³)	4.48×10 ⁻²	3.05×10 ⁻²	3.47×10 ⁻²	20.0	-
	处理就	- AT	实訓旅度 (mg/m²)	4.37	2.19	-	4.48×10-2	1
	施进口	臭气浓度	実測效度 (元量纲)	3548	2691	3.91	3548	
	A TAN		F建量(mAn)	1.55×10 ⁴	1.31×10	1.04×10 ⁴	-	-
2024.0	.17		想選(3C)	11.7	10.8	10.7	1.30 × 104	18
	₩13		空制效度(mg/m²)	2.93×10*	1.04×10 ⁻³	1.81×10-2	1	1
	修正拉	勒化製	非放速率 (kg/h)	4.54×10=	1.36×10 ⁴	1.88×10*	4.54×10 ⁻⁴	
	级事故		安徽浓度(mg/m')	1.96	1.24	1.58	1	45
	处理设	₩.	往放建率(kg/b)	3.04×10-2	1.62×10°	1.64×10 ⁻²	3.04×10*	
	加出口	A	实测深度 (无量纲)	1995	1122	1737	1995	
		臭气浓度	排放建率 (7)	1	1	10	1	
		7	支12 固定源废气		-			
-			- EACHAGE	THE DOS HIM	a the same	-	-	高
检测 日期		检测因子	检测指标	(V-	检测结果		最大值	皮皮
J41.		i in	EWES (-1977	1	2	3		m
	@14		F次量(m ^l /h)	8.86<104	7.23×10 ⁴	7,61×10 ⁴	7.90×10 ⁴	
	应急除 臭处理	商化氢	烟盘 (°C)	21.2	21.0	22.3	21.5	0
	设施社	気	等別院度(mg/m³)	5.94×10-2	5.65×10 2	5.29×10 ⁻²	5.94×10 ⁻²	1
	1	臭气浓度	实制体度(mg/m²) 实測体度(无量網)	6.15	6.35	5.83	6.35	
			F統章 (m²h)	9.61×10 ^a	4168 8.78×10 ⁴	3548	4168	
2024.0	17	-	烟酒 (°C)	23.7	19.7	8.29×10° 20.3	8.89=104	
	915		突赛浓度(mg/m²)	3.05×10 ⁻²	2.98×10 ⁻²	2.67×10 ⁻²	20.9	
	应急除	至化氧	排放速率(kg/h)	2.93>10	2.62×10 ⁻³	2.21×10-3	2.93×10*	
	臭处理		安赛欲度(mg/m²)	1.04	1.07	1.35	1	15
	设施出	¥.	排放建率(kg/h)	9.99×10 ⁻²	9.39×10 ⁻²	0.112	0.112	
			实则家庭 (先量河)	1122	1122	1513	1513	
		具气体度	非放选率 (7)	1	1	1	1	
						, it		

	The state of the s	NAME	表	13 固定源废气	检测结果	一覧表 10				
	金銭組	拉斯 点位	可控制因子	检测指标		检测结果		予助位	高度	
	-	ALL SAND	bu?	F流量(m/h)	1.68×104	2 1.52×10 ⁴	3 1.50×10 ⁴	1.57×10 ⁴	m	
		司关宫水		期鑑 (5C)	14.0	13.6	17.3	15.6	1	
		库处理设		实测微度(mg/m²)	1.7	1.3	1.4	1.5	1	
	. and a first control of	旅港口	類粒物	排放速率 (kg/h)	1	7	1	1		
	2024.01.18	89	杯丁	(元型 (m²/b)	1.58×10 ⁻	1.60×10 ⁴	1.54×10 ⁴	1.57×10 ⁴		
		多次哲存		图温 (°C)	13.6	14.0	16.5	14.7	1	
		库处理设	MITTER SE	实到旅费 (mg/m ¹)	<1.0	<1.0	<1.0	<1.0	10	
	228	適用コ	顆粒物	打放途奉(kgh)	1	1	1	<1.57×10 ⁻²	line.	
	各往	-	测定结束	NG于分析方法检出限H	4、报使用的	"方法检出限	2、并加"<"	表示		
	Series III		表	14 固定源废气	检测结果	一览表 11			91	
	校訓	检测	检测因子	检测指标	100	松淵结果			76	
	日期	点位	14.00 24 1	Too to the	1	2	3	最大值	度加	
		Φ10	杨王	·流量(m½)	3.64×10 ⁵	3.73×10 ¹	3.70×10*	3.69×10 ²	Las	
		渗滤液		想完(℃)	27.3	27.3	28.1	27.6		
		处理站	硫化氮	実測象度 (mg/m/)	4.10×10*2	4.14×102	3.50×10 ⁻²	4.14+10-3	6	
	WITH	度气处	被	实测体度 (mg/m²)	3.19	2.63	2.82	3.19	1	
		母设施	英气浓度	実製浓度 (无量集)	3090	1.000			10	
		进口				3090	2691	3098	2	
	2024.01.18	G11 渗透液 处理站 废气处 理设施		一流量(m ³ /h)	4.13+101	4.08×10 ⁴ 4.05×10 ⁵ 4.09×10 ³				
	2024.01.18			烟温 (°C)	29.7	29.7	31.1	39.2		
			防化氮	英測萊度(mg/m²)	2.94×10 ⁻²	3.06×10 ⁻³	2.04×10 ⁻⁵	1		
	120			排放道率(kg/h)	1.21×10 ⁻⁴	1.25×104	8.26×10 ⁻³	1.25×10 ⁻¹	15	
			17.	实制速度(mg/m³)	1.02	1.10	0.98	- 1		
		4,0		排放速率(kg/h)	4.21×10 ⁻¹	4.49×10 ⁻³	3.97×10 ⁻²	4.49×10/3		
			見气欲度	美測故度 (无量網)	1737	1513	1122	1737		
				排放速率(7)	- 1	1	- 1	1		
			表	15 固定源废气	金测结果	一览表 12				
	检测	检制	检测闪了	松瀬指示	NAME OF	检测结果	May 3	- 4-7b	高	
	巨期	点位	18.96.101.1	Townstate of	1	2	3	最大值	度 m	
	13	D12	柳干	· 武景(m/sh)	1.10×10 ²	1.11×10/	1.12×10 ⁴	1.11×104		
	0.5	機器域		图器 (°C)	21.8	22.7	22.8	22.4	10	
	2024.01.18	級事故	催化泵	实测液度 (mg/m²)	3.84×10-2	3.51×10 ⁻²	3.34×10 ⁻²	3.84×10 ⁻³	1	
		处理设	30.	実訓漆度 (mg/m³)	1.85	2.15	2.16	2.16	120	
	18. 7	施进口	臭气浓度	突測故度 (元量纲)	1995	2691	2290	2691		
					100					

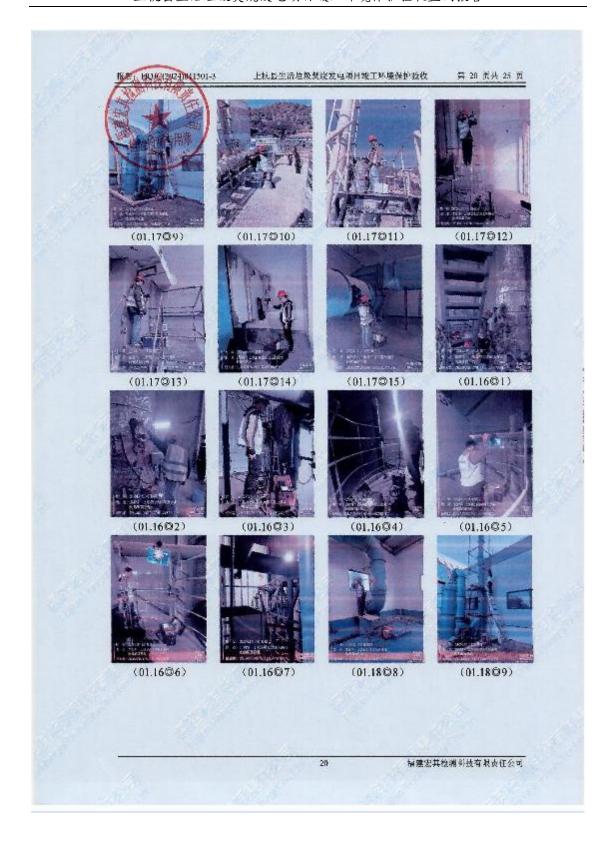
表 16 固定源废气检测结果一览表 13

检测	徐鹏	松剔因子	检测指标	11900	松朝结果			1
日期	旗梯	the water 1	位例目标	1	2	3	最大值	1
	Q14	45.7	F流量(mith)	7.85×10 ⁶	7,89~104	8.65×10*	8.14×104	
	放急除		機器 (℃)	23.6	23.4	23.4	23.4	
	臭处理	硫化領	实测敏度(mg/m²)	0.128	0.164	0.123	0.164	1
	设施进	贺.	实测效度(mg/m²)	8.62	7.65	8.03	8.62	
	П	臭气浓度	突肌浓度 (无量纲)	4786	3548	4168	4786	
		标十	·沈雪(m/th)	9.28×10 ⁴	8.30×10 ⁴	9.33×104	8.97×10°	
024.0L.18			規選 (fC)	21.9	20.6	23.1	21.9	1
	015	機化包	实到浓度 (mg/m²)	5.20×10 ⁻²	4.21×10 ⁻³	5.70×10 ⁻²	1	1
	应急除 具处理	UNIX	打放选率(kg/h)	4.83×10 ⁻⁵	3.49×10 ⁻¹	5.32=10-3	5.32×10 ⁻³	
- 30	设施出	**	疾制浓度(mg/m³)	1.96	1.94	2.15	10	
Here		ω,	排放資率(kg/h)	0.182	0.161	0.201	0.201	1
		臭气浓度	安測旅費 (无量組)	1737	1513	1737	1737	1
19		类 6件点	并放逐率(/)	- 1	1	I.	1	

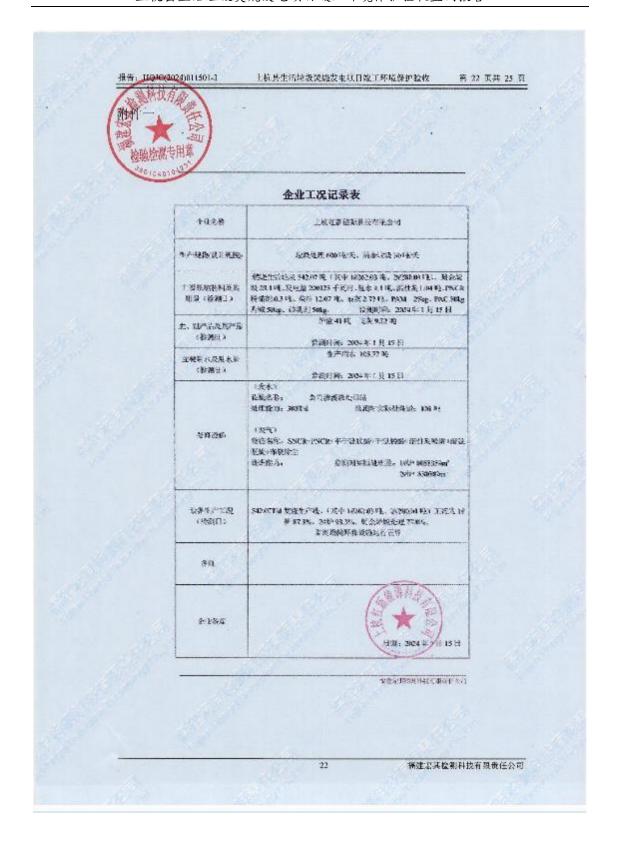
3 检测质量保证

- 3.1参加采样、检测分析人员均特证上岗;
- 3.2 检测分析仪器均在计量检定有效期内:
- 3.3 检测数据经三级审核;
- 3.4 实验室分析过程按环境检测规范进行质量控制,质控统计结果见表 17~表 24。

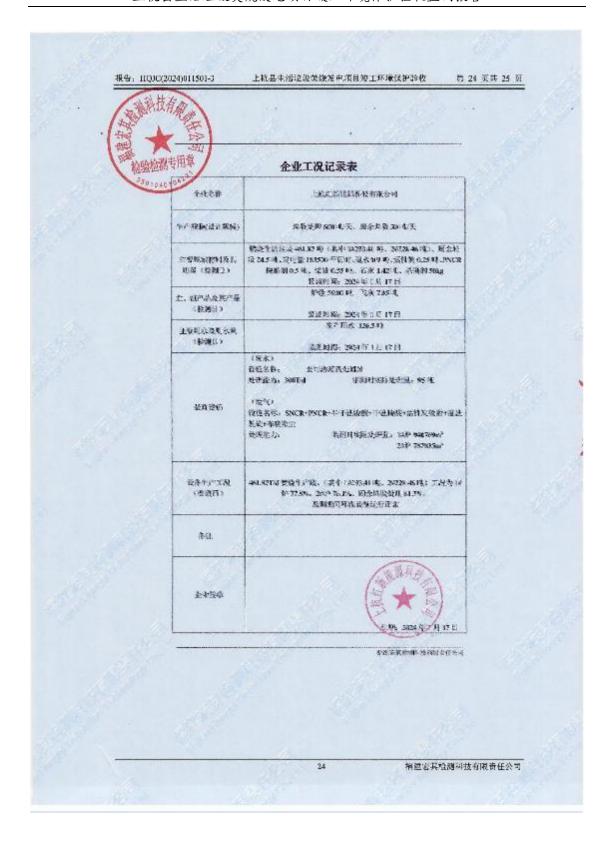
15

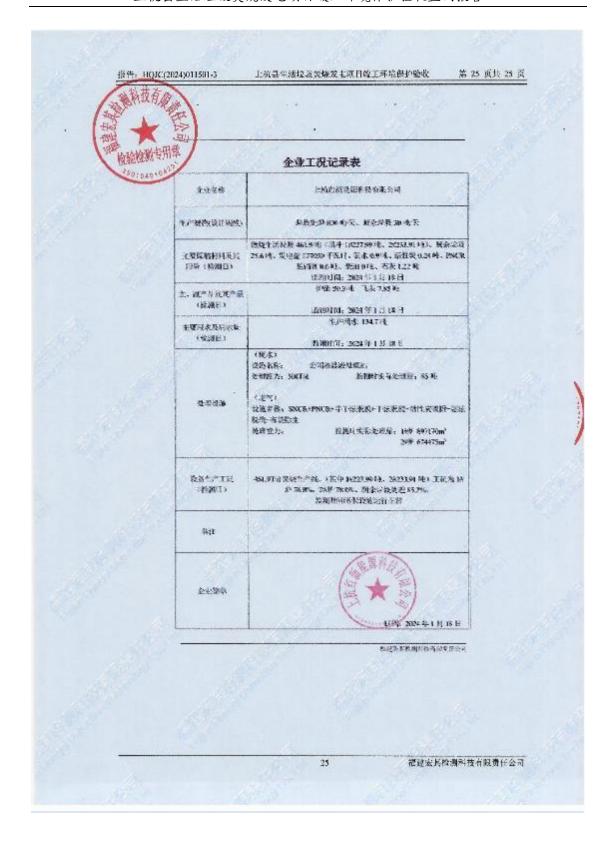

措建宏贝检测科技有限责任公司

144		1	表		生滤膜质					
他与	X	麵	2	f析时 a	京准制制角 重 (g)	标准: 称道 1	- S - DUS	6階建模 自2 (g)	允许确差 (g)	评价
· All		ALICEN :		2024.	12.72806	12.72	1000	2.72802	<0.00050	合格
25	0104046		1000	01.17	12.18381	12.18		2.18381	<0.80050	合格
2#		准滤膜(The same of the sa	2024	12,72806	12.72	-	2.72799	<0.00050	合格
-	0.0000000000000000000000000000000000000	推動膜(推進膜(2000	10000	12.18381 12.72806	12.18		2.18379	<0.00050	合格
3.9	2007	推造棋 (-		12.18381	12.18	100	2.72802	<0.00050	台格
-	Street, Square and	油炭族(-	12.72806	12.72	-	2.72803	<0.00050	合格 合格
4.8	2016	准建模(B) (01.20	12.18381	12.18	100	2.18377	<0.00050	合格
			表	18 度	气质控制	加州结果	長表 1			
检测	样是微	平行數	相划強力	评价	Sir!	邻	标准值	調值	相对误义	ON HO
项目	(个)	(个)	(%)	结果	1E4		(ug/L)	(ug/L)	(%)	结果
(4)	12	2	0.00-2.13	合格	50.00 标准	溶液	50.00	50.1	0.20	音音
91	12	2	-1.130.97	7 合格	50.00 标准	溶液	50.00	48,3	-3.40	合格
5%	12	2	-12.5-7.80	今格	50.00 标准: 50.00	解液	50,00	48.6	-2.80	合格
16	12	2	0.28-1.93		标准: 50.00	客快	50.00	48.4	-3.20	合格
- 作	12	2	0.00	合格	排除 00.00	奔夜	50.00	48.8	-2.40	台幣
15	12	2	-0.79-1.27	4	标准: 50.00		50.00	46.2 50.0	-7.60	合格
CE CE	12	2	-1.501,24		标准(ug/L	50.00	48.9	-2.20	合格
雜	12	2	-7,912.70	合格	标准: 50.00 标准:	oy/L	50.00	49.0	-2.00	合格
tic	12	2	0.00	合格	50,000	ug/f,	50.00	49.7	-0.60	合格
æ,	10	3	1	1	2069	113	0.992± 0.060	0.976 (mg/L)	-1.61	合格
_						112	(mg/L)	1.02 (mg/L) 2.82	


	The state of		表1	9 废气质控制	监测结果表	2		
	· · · · · · · · · · · · · · · · · · ·	(1) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	液	加标型 (ug)	療定性	(ug)	加权四枚率(96	評价 结果
	图形性次	2.00mg		2.0	-	97 98	98.5	台格
	-	0.01mg		1	-	099	99.0	-
	旅	观练 1.0	OmL	0.0111	1	098	98.0	合格
		10mg	L	1000	5.	10	102	4.12
	氣化氣	20% 0.5	OmL	5	4.	82	96.4	合格
	1		- 2	表 20 烟气校?	住记录表	A second	W-1-1-1	
	The state of the		标代	保证值	測定結果	(mp/m²)	相刈误差	(34)
	校准日期	仪器编号	(mg/m²	3.4500.000	采样前	送祥后	条件党	采样后
			O; (%)	5.04 7005	6,1 (%)	6.2 (%)	+2.5	+4,2
			12 (30	9,99 (%)	10.1 (%)	10.2 (%)	+1.1	+2,1
			SO ₂	52.3	53	53	+1,3	+1.3
			-	156	157	158	+8.6	+1.3
		HQYQ007-5	NO	80.8	83	82	+2.7	+1.5
	100		-	198 82.4	202 83	200	+2,0	+1.0
	48.0		NO ₂	203	206	207	+0.7	+0.7
	2024.01.14:采		-200	30.4	30	29	(1.5 -1.3	4.6
	样推测。		00	99.7	100	99	+0.3	-0.7
	2024.01.18 : 東		-	5.05 /963	6.0 (%)	5.9 (%)	+0.8	-0.8
	样后)		O2 (%)	9,99 (%)	10.0 (%)	10.0 (%)	+0.1	+0.1
			SO:	52.3	53	52	11.3	-0.6
			30;	156	156	157	+8.0	+0.6
		HQYQ007-6	NO	80.8	BL	82	+0.2	+1.5
	100	The court of	-	198	199	200	+0.5	+1.0
	100		NO:	82.4	84	84	+1.9	+1.9
	#		- (2)	203	201	206	-1.0	+1.5
			00	30.4 99.7	100	30	+0.3	-1.3
			本				70,3	+0.3
			表	21 邓平测里	校准记录表	2		2
	检准时间	仅務維	5	被校准仪器 流量示值 L/min	校准辦漢數 L/min	示值(展整% 详	价结果
	and a	HQYQ007-4	烟尘	50.0	50.1	4	0.2	合格
	2024.01.14	HQYQ007-5	類尘	50.0	50.0	0	.0	台格
	(ATH 10)	HQYQ007-6	類生	50.0	49.7	0	.6	合格
	3024.01.18	HQYQ007-5	烟尘	50.0	50.3	4	0.6	台格
	(条样后)	HQYQ007-6	烟尘	50.0	50.0	0	0	台格
							all a	


1	A STATE OF THE STA	战有	表:	12 大气采样器	校准记录表		
	控制工	() () () () () () () () () ()	9	投校准仪器 流量示值1.min	校准咨询数 L/min	水管误差%	评价结果
	100 to	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	A路	0.50	0,498	0.4	台格
	2021.01.11	. HQYQ006-7	BW	0.50	0.513	-2.6	合格
	(采样前)	150	A路	0.50	0.509	-1.8	台格
		HQYQ006-8	お路	0.50	0.193	1.4	合格
	110		A PA	(1.50)	0.495	1.0	合格
3	2024.01.18	HQYQ006-7	8 略	0.50	0.496	0.8	合格
	(栗仔后)		AB	0.50	0.500	0.0	合格
		HQYQ006-R	BIN	0.50	0.493	1,4	台灣
_		18/6	表		名单一览表		
y -	序号	姓名		ti	E书编号	1000	项目
_	1	李如		宏其記	(字第 084 号	9	(气采样
	2	周贯	W- 24	安共市	字類 085 号	9	E气采样
3	3	李金	ž /	宏其語	(字質 09) 号	ß	2代采样
	4	杜併	- 10	宏具系	7字第 094 号	10	2气保护
*	5	200	-	-	排字算 096 号		E气采样
_	6	盤仕3	-	1	3字算 098 号	SON AND AND AND	5气采样
-	7 8	like tig		7200	#字第 005 号		t験分析 PNA G-IC
100	9	林卯)	-		#字第 007 号 #字第 018 号	-	(能分析 (能分析
3777	10	黄文			8字第 03L 写		ESD 29 HT
-	11	林北村	100	-	李第 036 号		电影分析
-	12	陈诗	Ŧ	安共派	等第 042 号	2	以 绝分析
	13	核對	3	全 其4	#字第 045 号	9	以股分析
	14	数新 9	k	主 列(事第 062 号	3	印接分析
1967	15	张幹			N字第 063 号		设验分析
-	16	彰星》		· A	#字第 077 号		全致分析
-	17	罗孟		7.55	宇第 079 号	100	等級分析
_	18	老信! 王杉			明字第 081 号 地字第 099 号	The state of the s	N 检分析 实验分析
	19	25.0		6946	E-F-90 (09) - C	, ,	ASAST BT


	QJC(2024)011501-3	上杭县生	活垃圾快產发电项目竣工	L环境保护验收	第 19 页共 25 页
THE REAL PROPERTY.	拉有意	表 24	r 检测仪器一览表		
行。类别	检测国子	型号	. 父替名称	编号	校准成检定
700	和移動	SQP 젚	电子大学	HQYQ044	有效期至 2024.6.28
1 检验性	则和尼亚 。每	V-1100D	可见分光光度计	ндүдөп	有效期至 2024.2.23
2501	成化图、频果样	ADS-2062G	高角压智能综合采样	HQYQ006-7.	有效期至 2024.9.19
	A STATE OF	鯨底 2050	空气智能 TSP 综合	HQYQ006-6	有效期至 2024.7.1
固定源	颗技物、革命属	EM-3088	智能如尘烟气分析仪	HQYQ007-4	有效期至 2024.10.8
X'	来样	TW-3200D 🕸	低浓度稠尘(气) 衡 试仪	HQYQ007-5.	有效期至 2024.3.5
	亲	F732-VI	冷原子吸收到汞依	HQYQ066	有效期至 2024.6.28
	氯化氢	V-1100D	可见分光光度计	HQYQ011	有效期至 2024.2.23
	粉、砷、铬、镉、 铒、镍、锡、锑、 锭	7500ce	电影舞台等再子体质	HQYQ075	有效期至 2024.6.28
			ANI		
	.15@1) .15@5)	(01.15©2 (01.15©2		503)	(01.15@4) (01.17@8)



检测报告 TEST REPORT

编号: ZK2401020401C

委托单位:

福建宏其检测科技有限责任公司

受检单位:

上杭红新能源科技有限公司

项目名称:

上杭县生活垃圾焚烧发电项目竣工环境保护验收

监测

检测类别:

委托检测

Z. E. E.

江西志科检测技术有限公司 Jiangxi ZEK Testing Technology Co.,Ltd.

声明

- 一、本报告须经编制人、审核人及签发人签字,加盖本公司检验检测专用章和计量认证 章后方可生效;
- 二、对委托单位自行采集的样品,仅对送检样品检测数据负责,不对样品来源及其他信息,如受检单位信息、点位信息、名称信息等)的真实性负责。无法复现的样品,不受理申诉。
 - 三、木公司对报告真实性、合法性、适用性、科学性负责。

四、用户对本报告提供的检测数据若有异议,可在收到本报告 15 日内,向本公司客服部提出申诉,申诉采用来访、来电、来信、电子邮件的方式均可,超过申诉期限,概不受理。

五、未经许可,不得复制本报告(全文复制除外);任何对本报告未经授权之涂改、伪造、变更及不当使用均属违法,其责任人将承担相关法律及经济责任,我公司保留对上述违法行为追究法律责任的权利。

六、我公司对本报告的检测数据保守秘密、

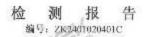
地: 红西省南昌市南昌县小蓝经济技术开发区金沙一路 1069 号

邮政编码: 330200

电 话: 0791-82205818 投诉电话: 0791-82205818

R. EEK

		#17: ZK 20010204	no.	第1页共36页				
委拍	E单位	福建宏其检测	福建宏其检测科技有限责任公司					
受核	全单位.	上杭红新能	源科技有限公	il				
项目	日名称	上杭县生活垃圾焚烧发电	1项目竣工环均	能保护験收监测				
联系	人姓名	林光辉	联系方式	18059045867				
检证	(単位	江西志科检测技术有限公司	采样人	李伙平、钟小豪				
委托	E方式	# X	样检测					
样品	是类型	有组织废	气,环境空气					
采档	华日期	2024.01.15 ~ 2024.01.18	检测周期	2024.01.22 - 2024.01.29				
检测	自的	受福建宏其检测科技有限责任公司 组织废气 - 赐英类、5						
检纸	则结果	有组织废气检测结果见附表	1、环境空气	检测结果见附表 2				
检测	训依据	_ [] [] []	附表3					
编	经下列人 制: 以 核: 以 从	沙文						
	12. Z		签发	检測服告专用章 位置を対する。 口期 2%件 の月 30 日				


Z. E. E.

Z EEK

附表 1 有组织废气检测结果表

采样口期	点位名称	样品编号	样品状态	检测项目	检测结果 (ngTEQ/Nm ³)	平均值 (ngTEQ/Nm³)
2024-01-15	1//焚烧炉 排放口	FZK2401500101	(气)石英纤 维滤筒、树 脂、冷凝水	二噁英类	0.092	25
2024-01-15	□16焚烧炉 排放口	FZK2401500102	(气)石页纤 维滤筒、树 脂、冷凝水	二喝英类	0.079	0,063
2024-01-15	in焚烧炉 排放口	FZK2401500103	('()) 有英纤 维滤筒、柄 脂、冷凝水	二噁英类	0.017	
2024-01-16	1#焚烧炉 排放口	FZK2401500104	(气)石英纤 锥滤筒、树 脂、冷凝水	二原英类	0.016	434
2024-01-16	1#樊廃炉 排放口	FZK2401500105	(气)石英纤 维滤筒、树 脂、冷凝水	二噁英类	0.015	0.036
2024-01-16	1#焚烧炉 排放口	FZK2401500106	(气)石炭纤 维滤筒、树 脂、冷凝水	二噻英类	0.078	
2024-01-17	2#焚烧炉 排放口	FZK2401500201	(气) 有英纤 蜂滤筒、树 朋、冷凝水	二噁英类	0.0068	
2024-01-17	2#焚烧炉 排放口	FZK2401500202	(气)石英纤 维總筒、桝 脂、冷凝水	二噁英炎	0.010	0.0083
2024-01-17	26焚烧炉 排放口	FZK2401500203	(气)石美纤 维滤筒、桝 脂、冷凝水	二噁英类	0.0080	
3024-01-18	20焚烧炉 排放口	FZK2401500204	(气)石英纤 類等高、樹 艙、冷凝水	二噁英类	0.0072	
2024-01-18	20类烧炉 排放口	FZK2401500205	彩() 石英纤 维滤筒, 树 脂、冷凝水	二噁英类	0.0078	0.0074
2024-01-13	2世 英焼か 排放口	FZK2401500206	(气)石英纤 维滤筒、树 脂、冷凝水	二喝芙茭	0.0073	ZEV

管道及废气参数

点位名称	样品编号	排气信高 度(m)	裁面积 (m²)	含氧量 (%)	烟温 (°C)	含混量 (%)	平均流速 (m/s)	标干风量 (m ³ /h)
	FZK2401500101	100	1.5394	7.9	145.7	20.01	14.6	41368
	FZK2401500102	100	1.5394	8.3	149.5	19.73	14.9	41837
10英流炉排。	FZK2401500103	100	1.5394	8.3	142.6	19.95	14.9	42369
放馬	FZK2401500104	100	1,5394	8.2	149.4	20.09	14:7	41238
	FZK2401500105	100	1.5394	8.1	147.6	20.69	14.9	41546
7	FZK2401500106	100	1.5394	₩ 8.1	149.9	21.03	14,7	40543
	FZK2401500201	100	1,5394	7.1	140.7	17,51	13.3	39301
1	FZK2401500202	100	1.5394	6.5	139.1	18.05	13.5	39657
24焚烧炉排	FZK2401500203	100	1.5394	7.3	149.6	17.85	13.7	39226
故口	FZK2401500204	100	1.5394	7.1	147.0	18.36	13.7	39327
	FZK2401500205	100	1.5394	6.9	149.1	18.89	13.7	38755
-14	FZK2401500206	100	1.5394	7.4	158.7	19.02	13.6	37506

附表 2 环境空气检测结果表

采样日期	点位名称	样品编号	样品状态	检测项目	检测结果 (pgTEQ/Nm²)
2024-01-15	上杭县城	KZK2401500101	(气) 石英纤维滤 膜、PUF	二噁英类	0.041
2024-01-16	上就長坡	KZK2401500102	(气)石英纤维滤 膜、PUT	二噁英类	0.020
2024-01-15	有联型	KZK2401500201	(气)石英纤维滤 膜、PUF	二啶灰类	0:017
2024-01-16	百联章	KZK2401500202	(气)石英纤维滤 膜、PUF	二噁英类	0.094

附件 高分辨气相色谱-质谱仪分析原始记录

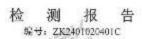
	样品类型	27/	有组织废气		
	样品编号	FZK2401500101	取样量(Nm³)	1	1.07
		检出限	組份浓度	海佐*	当量浓度
	二噁英类	单位:ng/Nm³	单位:ng/Nm²	I-TEF	单位: ngTEQ/Nm ¹
1	2,3,7,8-T ₄ CDD	0.000014	0.016	*1	0.016
多額	1,2,3,7,8-P ₂ CDD	0.00014	N.D.(<0.00014)	×0.5	0.000035
快二	1,2,3,4,7,8-H ₆ CDD	0.000097	N.D.(<0.000097)	×0.1	0.00000048
苯并-	1,2,3,6,7,8-H ₆ CDD	0.00024	0.032	×0.1	0.0032
对-二 PB #	1,2,3,7,8,9-H ₆ CDD	0.00014	N.D.(<0.00014)	×0.1	0.0000070
嗯美 -	1,2,3,4,6,7,8-H ₂ CDD	0.00014	0.062	×0.01	0.00062
	O ₃ CDD	0.00048	0.076	×0.001	0.000076
8 -	2,3,7,8-T ₀ CDF	0.000097	0.17	×0.1	0.017
1	1,2,3,7,8-P5CDF	0.000048	0.090	×0.05	0.0045
24	2,3,4,7,8-P ₅ CDF	0.00014	0.086	×0.5	0.043
SH	1,2,3,4,7,8-H ₆ CDF	0.00029	0.11	×0.1	0.011
代二	1,2,3,6,7,8-H ₆ CDF	0.000097	0.14	×0.1	0.014
苯并	1,2,3,7,8,9 H ₆ CDF	0.00014	N.D.(<0.00014)	×0.1	0.0000070
呋啉	2,3,4,6,7,8-H ₆ CDF	0.000097	0.12	×0.1	0.012
	1,2,3,4,6,7,8-H ₂ CDF	0.00024	0.26	×0.01	0.0026
	1,2,3,4,7,8,9-H ₂ CDF	0:00019	N.D.(<0.00019)	*0.01	0.00000095
	O ₈ CDF	0.00029	0.034	×0.001	0.000034
.6	工理英类测定浓度 单位。	ngTEQ/Nm ³		0.12	7
6	平均含氮量 (%	الدار ال		7.9	
100	11%含氧量換算后二項	B英浓度	P (0.092	

附件 高分辨气相色谱-质谱仪分析原始记录

		有组织废气			
	样品编号	FZK2401500102	取样量(Nm³)	2.09	
	一唱英类 華位:ng/Nm³		组份旅度	毒性?	当量浓度
			進行:ng/Nm³	I-TEF	单位: ngTEQ/Nm
18	2,3,7,8-T ₄ CDD	0.000014	0.016	×I	0.016
855	1,2,3,7,8-P ₅ CDD	0.00014	N.D.(<0.00014)	×0.5	0.000035
代二	1,2,3,4,7,8-H ₂ CDD	0.000096	N.D.(<0.000096)	×0.1	0.0000048
苯并-	1,2,3,6,7,8-H ₁ CDD	0.00024	0.023	×0.1	0.0023
州-二	1,2,3,7,8,9-H ₅ CDD	0.00014	N.D.(<0.00014)	×0.1	0.0000070
脱英 -	1,2,3,4,6,7,8-H-CDD	0.00014	N.D.(<0.00014)	×0.01	0.00000079
	O ₈ CDD	0.00048	0.050	100.0×	0.000030
	2,3,7,8-T ₄ CDF	0.000096	0.15	×0.1	0.015
1	1,2,3,7,8-P ₅ CDF	0.000048	0.080	×0.05	0.0040
2	2,3,4,7,8-P ₅ CDF	0.00014	0.072	×0.5	0.036
多氯	1,2,3,4,7,8-H ₆ CDF	0.00029	0.10	×0.1	0.010
代二	1,2,3,6,7,8-H ₆ CDF	0.000096	0.11	×0.1	0.011
	1,2,3,7,8,9-H ₆ CDF	0.00014	N.D.(<0.00014)	×0.1	0.0000070
呋喃	2,3,4,6,7,8-H ₆ CDF	0.000096	0.086	×0.1	0.0086
	1,2,3,4,6,7,8-H;CDF	0.00024	0.17	×0.01	0.0017
	1,2,3,4,7,8,9-H;CDF	0.00019	0.026	×0.01	0.00026
	O ₃ CDF	0.00029	0.028	×0.001	0.000028
.0	医英类测定浓度 单位:	ngTEQ/Nm³		0.10	
2	平均含氧量(%	3 24		8.3	
-101	11%含氧量換算后 明	8英浓度	A (1.079	

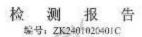
检测报告

编号: ZK2401020401C



附件 高分辨气相色谱-质谱仪分析原始记录

			有组织废气		
	样品编号	FZK2401500103	取样量(Nm³)	2.11	
		检出限	組份欲度	毒性*	量浓度
	二噁英类	单位:ng/Nm³	単位:ng/Nm²	I-TEF	单位: ngTEQ/Nm
400	2,3,7,8-T4CDD	0.000014	0.0058	×1	0,0058
水 氯	1,2,3,7,8-P ₂ CDD	0.00014	N.D.(<0.00014)	×0.5	0.000035
70 m	1,2,3,4,7,8-H ₆ CDD	0.000095	N.D.(<0.000095)	×0.1	0.0000048
苯并-	1,2,3,6,7,8-H ₆ CDD	0.00024	N.D.(<0.00024)	*0.1	0.000012
对	1,2,3,7,8,9-H ₆ CDD	0.00014	N.D.(<0.00014)	1.0×	0.0000070
15英	1,2,3,4,6,7,8-H ₂ CDD	0.00014	N.D.(<0.00014)	×0.01	0.0000007
	O ₃ CDD	0.00047	N.D.(<0.00047)	×0.001	0.00000024
	2,3,7,8-T ₄ CDF	0.000095	0.018	×0.1	0.0018
-	1,2,3,7,8-P ₂ CDF	0.000047	0.0090	×0.05	0.00045
24	2,3,4,7,8-P ₂ CDF	0.00014	0.024	×0.5	0.012
多氣	1,2,3,4,7,8-H ₀ CDF	0.00028	N.D.(<0.00028)	×0.1	0.000014
代二	1,2,3,6,7,8-H ₆ CDF	0.000095	N.D.(<0.000095)	1.0×	0.0000048
苯并	1,2,3,7,8,9-H ₆ CDF	0.00014	N.D.(<0,00014)	1.0×	0.0000070
呋喃	2,3,4,6,7,8-H ₆ CDF	0.000095	N.D.(<0.000095)	×0.1	0.0000048
	1,2,3,4,6,7,8-H;CDF	0.00024	0.053	*0.01	0.00053
	1,2,3,4,7,8,9-H;CDF	0.00019	N.D.(<0.00019)	×0.01	0.00000095
	O ₅ CDF	0.00028	N.D.(<0.00028)	×0.001	0.00000014
	二處英类測定浓度 单位;	ngTEQ/Nm³	(0.021	/
	平均含氧量(%)		8.3	
30	11%含氧量换算后二明	2英恢度		0.017	


附件 高分辨气相色谱-质谱仪分析原始记录

	样品类型	27	有组织废气		
	样品编号	FZK2401500104	取样量(Nm3)	2.05	
		检出限	组份浓度	毒性:	当量浓度
	二陽英类	单位:ng/Nm²	単位.ng/Nm³	I-TES	单位: ngTEQ/Nm
16	2.3,7,8-T ₄ CDD	0.000015	N.D.(<0.000015)	*1	0.0000075
8 M	1,2,3,7,8-P ₅ CDD	0.00015	N.D.(<0.00015)	×0.5	0.000038
10=	1,2,3,4,7,8-H₃CDD	0.000093	N.D.(<0.000098)	×0.1	0.0000049
苯并-	1,2,3,6,7,8-H ₅ CDD	0.00024	N.D.(<0.00024)	×0.1	0.000012
对-二	1,2,3,7,8,9-H ₅ CDD	0.00015	N.D.(<0.00015)	×0.1	0.0000075
感英	1,2,3,4,6,7,8-H ₁ CDD	0.00015	N.D.(<0.00015)	×0.01	0.00000075
	O ₈ CDD	9.00049	0.040	×0.001	0.000040
	2,3,7,8-T ₄ CDF	0.000098	0.014	×0.1	0.0014
	1,2,3,7,8-P ₅ CDF	0.000049	0.010	×0.05	0.00050
	2,3,4,7,8-PsCDF	0.00015	0.031	×0.5	0.016
水氣	1,2,3,4,7,8-H ₆ CDF	0.00029	N.D.(<0.00029)	×0.1	0.000014
代二	1,2,3,6,7,8-H ₅ CDF	0.000898	0.016	×0.1	0.0016
苯并	1,2,3,7,8,9-H ₅ CDF	0.00015	N.D.(<0.00015)	×0.1	0.0000075
呋喃	2,3,4,6,7,8-H ₅ CDF	0.000098	N.D.(<0.000098)	×0.1	0.0000049
	1,2,3,4,6,7,8-H;CDF	0.00024	0.060	×0.01	0.00060
	1,2,3,4,7,8,9-H;CDF	0.00020	N.D.(<0.00020)	×0.01	0.0000010
	O ₃ CDF	0.00029	N.D.(<0.00029)	×0.001	0.00000014
.6	工應英类測定浓度 单位: ngTEQ/Nm²			0.020	g .
7	平均含氧量 (%)	الدر ال		8.2	
1	11%含氧量换算后二9	8英浓度	Ø .	2.016	
É	[注]: N.D.指	低于校出版。 计算内性的	音量浓度时以 1/2 检吕阳	it-	

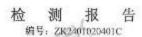
附件 高分辨气相色谱-质谱仪分析原始记录

	样品类型		有组织液气		
	样品编号	FZK2401500105	取样量(Nm²)		2.07
		检出限	组份浓度	毒性	当量浓度
	二噁英癸	单位:ng/Nm²	单位:ng/Nm³	I-TEF	m(0) ngTEQ/Nm
18	2,3,7,8-T ₄ CDD	0.000014	0.0023	*1	0.0023
多飯	1,2,3,7,8-P ₅ CDD	0.00014	N.D.(<0.00014)	×0.5	0.000035
代二	1,2,3,4,7,8-H ₁ CDD	0.000097	N.D.(<0.000097)	×0.1	0.0000048
苯并-	1,2,3,6,7,8-H ₃ CDD	0.00024	N.D.(<0.00024)	×0.1	0.000012
X1	1,2,3,7,8,9-H ₀ CDD	0.00014	N.D.(<0.00014)	×0.1	0.0000070
場英	1,2,3,4,6,7,8-H ₃ CDD	0.00014	N.D.(<0.00014)	×0.01	0.00000070
	O ₈ CDD	0.00048	0.054	×0.001	0.000054
	2,3,7,8-T ₄ CDF	0.000097	0.014	×0.1	0.0014
	1,2,3,7,8-P5CDF	0.000048	0.011	×0.05	0.00055
2	2,3,4,7,8-P ₅ CDF	0.00014	0.027	×0.5	0.014
恋菜	1,2,3,4,7,8-H ₃ CDF	0.00029	N.D.(<0.00029)	×0.1	0.000014
代二	1,2,3,6,7,8-H ₂ CDF	0.000997	N.D.(<0.000097)	×0.1	0.0000048
苯井	1,2,3,7,8,9-H ₀ CDF	0.00014	N.D.(<0.00014)	×0.1	0.0000070
呋梅	2,3,4,6,7,8-H ₆ CDF	0.000097	N.D.(<0,000097)	×0.1	0.0000048
	1,2,3,4,6,7,8-H ₇ CDF	0.00024	0.047	×0.01	0.00047
	1,2,3,4,7,8,9-H ₂ CDF	0.00019	N.D.(<0.00019)	×0.01	0.00000095
	O _E CDF	0.00029	N.D.(<0.00029)	×0.001	0.00000014
-6	工權英类測定浓度 单位;	ngTEQ/Nm ²	(1.019	7
2	平均含氣量(%	المام المام		8.1	
30	11%含氧量換算后二項	8英徐度	*	0.015	
	[注]: N.D.指	低于檢監限, 计算事件:	当量浓度时以 1/2 检出限	計 .	

附件 高分辨气相色谱-质谱仪分析原始记录

	样品类型		有组织废气		
	样品编号	FZK2401500106	収样量(Nm³)	2.02	
		檢出限	组份浓度	毒性当量浓度	
	二喝英类	单位:ng/Nm²	单位:ng/Nm³	1-TEF	#.f/c: ngTEQ/Nm
-19	2,3,7,8-T ₄ CDD	0.000015	0.012	×1	0.012
8-57.	1,2,3,7,8-P ₂ CDD	0,00015	N.D.(<0.00015)	×0.5	0.000038
4二	1,2,3,4,7,8-H ₆ CDD	0.000099	N.D.(<0.000099)	×0.1	0.0000050
苯并-	1,2,3,6,7,8-H ₆ CDD	0.00025	N.D.(<0.00025)	×0.1	0.000012
채-二	1,2,3,7,8,9-H ₆ CDD	0.00015	N.D.(<0.00015)	×0.1	0.0000075
環英	1,2,3,4,6,7,8-H ₂ CDD	0.00015	N.D.(<0.00015)	×0.01	0.00000075
	O ₈ CDD	0.0005G	0.071	×0.001	0.000071
	2,3,7,8-T ₂ CDF	0.000099	0.14	×0.1	0.014
	1,2,3,7,8-P ₅ CDF	0.000050	0.057	×0.05	0.0028
2	2,3,4,7,8-P ₅ CDF	0.00015	0.097	×0.5	0.048
非氣	1,2,3,4,7,8-H ₆ CDF	0.00030	0.074	×0.1	0.0074
18=	1,2,3,6,7,8-H ₆ CDF	0.000099	0.077	×0.1	0.0077
苯并	1,2,3,7,8,9-H ₆ CDF	0.00015	N.D.(<0.00015)	×0.1	0.0000075
映南	2,3,4,6,7,8-H ₆ CDF	0.000099	0.074	×0.1	0.0074
	1,2,3,4,6,7,8-H ₂ CDF	0.00025	0.15	×0.01	0.0013
	1,2,3,4,7,8,9-H ₂ CDF	0.00020	N.D.(<0.00020)	×0.01	0.0000010
	OccDF	0.00030	N.D.(<0,00030)	×0.001	0.00000015
10	工權英英別定款度 单位;	ngTEQ/Nm²		0.10	7
2	平均含氧量(%	المدر د		8.1	
30	[1%含氧量换算后]]]	8英恢度	6	1.078	
	[注]: N.D.档	低于檢丘域, 计算毒性当	自量浓度时以 1/2 检出限	it.	

26.0

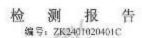

附件 高分辨气相色谱-质谱仪分析原始记录

	样晶类型		有组织废气		
	样品编号	FZK2401500201	収拌量(Nm³)	1.96	
	1750 200 400 400	检出限	组份浓度	毒性	4量浓度
	學英类		单位:ng/Nm*	I-TEF	单位。 ngTEQ/Nm ²
18	2,1,7,8-T ₄ CDD	0.000015	N.D.(<0.000015)	*1	0.0000075
多製	1,2,3,7,8-P ₅ CDD	0.00015	N.D.(<0.00015)	×0.5	0.000038
re=	1,2,3,4,7,8-H ₆ CDD	0.00010	N.D.(<0.00010)	×0.1	0.0000050
和井-	1,2,3,6,7,8-H ₆ CDD	0,00026	N.D.(<0.00026)	×0,1	0.000013
対一二	1,2,3,7,8,9-H ₅ CDD	0.00015	N.D.(<0.00015)	×0.1	0.0000075
場英	1,2,3,4,6,7,8-H;CDD	0.00015	N.D.(<0.00015)	×0.01	0.00000075
	O ₅ CDD	0.00051	N.D.(<0.00051)	×0.001	0.00000026
	2,3,7,8-T4CDF	0.00010	0.014	×0.1	0.0014
-	1,2,3,7,8-P ₃ CDF	0.000051	0.0092	×0.05	0.00046
	2.3,4,7,8-P ₅ CDF 0.00015	0.00015 0.014	0.014	×0.5	0.0070
8 T	1,2,3,4,7,8-H _E CDF	0.00031	N.D.(<0.00031)	×0.1	0.000016
(中二	1,2,3,6,7,8-H ₆ CDF	0.00010	N.D.(<0.00010)	×0.1	0.0000050
苯升	1,2,3,7,8,9-H ₅ CDF	0.00015	N.D.(<0.00015)	×0.1	0.0000075
呋喃	2,3,4,6,7,8-H ₅ CDF	0.00010	N.D.(<0.00010)	×0.1	0.0030050
	1,2,3,4,6,7,8-H ₇ CDF	0.00026	0.055	×0.01	0.00055
	1,2,3,4,7,8,9-IIi:CDF	0.00020	N.D.(<0.00020)	×0.01	0.0000010
	O ₄ CDF	0.00031	N.D.(<0.00031)	×0.001	0.00000016
6	工學英类测定浓度 单位:	ngTEQ/Nm²	0	.0095	-
2	◎ 平均含領量 (%	1		7.1	
100	11%含氧量换算后二吨	8英物度	0	.0068	

第 11 页 共 36 页

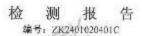
附件 高分辨气相色谱-质谱仪分析原始记录

样品类型			有组织废气				
样品编号		FZK2401500202	取样量(Nm³))	1.98		
二噁英美		检出限	组份旅度	毒性当量浓度			
		单位mg/Nm³	单位:ng/Nm³	I-TEF	章位: ngTEQ/Nm		
48	2,3,7,8-T ₄ CDD	0.000015	0.0046	×1	0.0046		
多無	1,2,3,7,8-P ₂ CDD	0.00015	N.D.(<0.00015)	×0.5	0.000038		
代二	1,2,3,4,7,8-H ₆ CDD	0.00010	N.D.(<0.00010)	×0.1	0.0000050		
苯并-	1,2,3,6,7,8-H ₆ CDD	0.00025	N.D.(<0.00025)	×0.1	0.000012		
对二	1,2,3,7,8,9-H ₆ CDD	0.00015	N.D.(<0.00015)	×0.1	0.0000075		
原英	1,2,3,4,6,7,8-H:CDD	0.00015	N.D.(<0.00015)	×0.01	0.00000075		
	O ₈ CDD	0.00051	0.053	×0.001	0,000053		
	2,3,7,8-T ₄ CDF	0.00010	0.015	×0.1	0.0015		
	1,2,3,7,8-P₂CDF	0.000051	0.0091	×0.05	0.00046		
	2,3.4,7,8-P ₅ CDF	0.00015	0.016	×0.5	0.0080		
8.2	1,2,3,4,7,8-H ₆ CDF	0.00030	N.D.(<0.00030)	×0.1	0.000015		
代二	1,2,3,6,7,8-H ₆ CDF	0.00010	N.D.(<0.00010)	×0.1	0.0000050		
苯并	1,2,3,7,8,9-H ₆ CDF	0.00015	N.D.(<0.00015)	×0.1	0.0000075		
呋喃	2,3,4,6,7,8-H ₄ CDF	0.00010	N.D.(<0.00010)	×0.1	0.0000050		
	1,2,3,4,6,7,8-H;CDF	0.00025	0.043	×0.01	0.00043		
	1,2,1,4,7,8,9-H:CDF	0.00020	N.D.(<0.00020)	×0.01	0.0000010		
	O ₈ CDF	0.00030	N.D.(<0.00030)	×0.001	0.00000015		
-6	工艺英类测定浓度 单位:ngTEQ/Nm²		0.015				
1	平均含氧量(%)		6.5				
30	11%含氧量换算后二%	8页浓度	0.010				



附件 高分辨气相色谱-质谱仪分析原始记录

样品类型 样品编号		27	有组织废气	有组织废气		
		FZK2401500203	取样量(Nm ³)		1.95	
400 (4,400 (5))		检出限	组份浓度	毒性当量物度		
	三鬼英类	单位:ng/Nm³	单位ng/Nm ¹	I-TEF	单位 ngTEQ/Nm	
-38	2,3,7,8-T ₄ CDD	0.000015	0.0032	×1	0.0032	
3 T	1,2,3,7,8-P ₁ CDD	0.00015	N.D.(<0.00015)	×0.5	0.000038	
代二	1,2,3,4,7,8-H ₆ CDD	0.00010	N.D.(<0.00010)	×0.1	0.0000050	
苯并-	1,2,3,6,7,8-11 ₆ CDD	0.00026	N.D.(<0.00026)	×0.1	0.000013	
材二 原英	1,2,3,7,8,9-H ₆ CDD	0.00015	N.D.(<0.00015)	×0.1	0.0000075	
430 SE	1,2,3,4,6,7,8-H ₂ CDD	0.00015	N.D.(<0.00015)	×0.01	0.00000075	
	OtCDD	0.00051	0.072	×0.001	0.000072	
	2,3,7,8-T ₄ CDF	0.00010	0.0087	×0.1	0.00087	
-	1,2,3,7,8-P ₂ CDF	0.000051	0.0072	×0.05	0.00036	
5	2.3,4,7,8-P ₅ CDF	0.00015	0.012	×0.5	0.0060	
李敖	1,2,3,4,7,8-H ₆ CDF	0.00031	N.D.(<0,00031)	×0,1	0.000016	
化二	1,2,3,6,7,8-H ₅ CDF	0.00010	N.D.(<0.00010)	×0.1	0.0000050	
茶井	1,2,3,7,8,9-H ₂ CDF	0.00015	N.D.(<0.00015)	×0.1	0.0000075	
块帽	2,3,4,6,7,8-H _d CDF	0.00010	N.D.(<0.00010)	×0.1	0.0000050	
	1,2,3,4,6,7,8-H)CDF	0.00026	0.036	×0.01	0.00036	
	1,2,3,4,7,8,9-H-CDF	0.00021	N.D.(<0.00021)	×0.01	0.0000310	
	O ₈ CDF	0.00031	N.D.(<0.00031)	×0.001	0.00000016	
-5	工理英类测定液度 单位: ngTEQ/Nm'		0.011			
2	平均含氧层 (%)		7.3			
100	11%含氧量换算后二%	0.0080				


附件 高分辨气相色谱-质谱仪分析原始记录

样品类型			有组织废气				
样品编号		FZK2401500204	取样量(Nm³)	1.96			
C->-700000000		検出限	组份浓度	毒性当量浓度			
	二嗪英类	单位:ng/Nm²	单位mg/Nm®	I-TEF	单位; ngTEQ/Nm		
10	2,3,7,8-T4CDD	0.000015	0.0054	×1	0.0054		
891	1,2,3,7,8-P₂CDD	0.00015	N.D.(<0.00015)	×0.5	0.000038		
Pt =	1,2,3,4,7,8-H ₆ CDD	0.00010	® N.D.(<0.00010)	×0.1	0.0000050		
苯并-	1,2,3,6,7,8-H ₆ CDD	0.00026	N.D.(<0.00026)	×0.1	0.000013		
柳二 原美	1,2,3,7,8,9-HaCDD	0.00015	N.D.(<0.00015)	×0.1	0.0000075		
188-央	1,2,3,4,6,7,8-H-CDD	0.00015	N.D.(<0.00015)	×0.01	0.00000075		
	O ₄ CDD	0.00051	N.D.(<0.00051)	×0.001	0.00000026		
	2,3,7,8-T4CDF	0.00010	0.011	×0.1	0.0011		
	1,2,3,7,8-P ₅ CDF	0.000051	N.D.(<0.000051)	×0.05	0.0000013		
2	2,3,4,7,8-P ₃ CDF	0.00015	0.0068	×0.5	0,0034		
多凯	1,2,3,4,7,8-H ₆ CDF	0,00031	N.D.(<0.00031)	×0.1	0.000016		
代	1,2,3,6,7,8-H ₆ CDF	0.00010	N.D.(<0.00010)	×0.1	0.0000050		
苯并	1,2,3,7,8,9-H ₆ CDF	0.00015	N.D.(<0.00015)	×0.1	0.0000075		
呋喃	2,3,4,6,7,8-H ₆ CDF	0.00010	N.D.(<0.00010)	×0.1	0.0000050		
	1,2,3,4,6,7,8-H)CDF	0.00026	0.032	×0.01	0.00032		
	1,2,3,4,7,8,9-H ₂ CDF	0.00020	N.D.(<0.00020)	×0.01	0.0000010		
	OsCDF	0.00031	N.D.(<0.00031)	×0.001	0.90000016		
-6	工理英类别定浓度 单位: ngTEQ/Nm³		C.010				
	平均含氧量(%	7.1					
100	11%含氧量换算后 《	® 0	0.0072				
	1100-0001000 SECTION A 170		当量浓度时以 1/2 检出限	1.001.00			

Z EEK

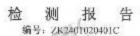
附件 高分辨气相色谱-质谱仪分析原始记录

#品額号 - 嘲英类 	FZK2401500205 检出限 单位:ng/Nm ³	取样量(Nm³) 组份浓度		1.94 当量浓度
1	1000	100.00	毒性	当量浓度
1	你你:ng/Nm³	#LG/mo/Nm3		
2,3,7,8-T ₄ CDD		单位:ng/Nm ^N	I-TEF	作位: ngTEQ/Nar
	0.000015	N.D.(<0.000015)	×1	0.0000075
1,2,3,7,8-P ₃ CDD	0.00015	N.D.(<0.00015)	×0.5	0.000038
1,2,3,4,7,8-H ₆ CDD	0.00010	N.D.(<0.00010)	×0.1	0.0000050
1,2,3,6,7,8-H ₆ CDD	0.00026	N.D.(<0.00026)	×0.1	0.000013
1,2,3,7,8,9-H ₆ CDD	0.00015	N.D.(<0.00015)	×0.1	0.0000075
1,2,3,4,6,7,8-H ₂ CDD	0.00015	N.D.(<0.00015)	×0.01	0.00000075
O ₈ CDD	0.00052	N.D.(<0.00052)	×0.001	0.00000026
2,3,7,8-T ₄ CDF	0.00010	0.0095	×0.1	0.00095
1,2,3,7,8-P ₅ CDF	0.000052	0.0071	×0.05	0.00036
2,3,4,7,8-P ₃ CDF	0.00015	0.019	×0.5	0.0095
1,2,3,4,7,8-H ₆ CDF	0.00031	N.D.(<0.00031)	×0.1	0.000016
1,2,3,6,7,8-H ₆ CDF	0.00010	N.D.(<0.00010)	×0.1	0.0000050
1,2,3,7,8,9-H ₆ CDF	0.00015	N.D.(<0.00015)	¥0.1	0.0000075
2,3,4,6,7,8-H ₆ CDF	0.00010	N.D.(<0.00010)	1.0×	0.0000050
1,2,3,4,6,7,8-H;CDF	0.00026	0.020	×0.01	0.00020
1,2,3,4,7,8,9-H-CDF	0.00021	N.D.(<0.00021)	×0.01	0.0000010
O ₂ CDF	0.00031	0.017	×0.001	0.000017
工吧荧类测定浓度 单位: ngTEQ/Nm² 平均含氧量(%)		0.011		
平均含氧量(%)	6.9		
	4英浓度	0.0078		
Contraction of the Contraction o	1,2,3,7,8,9-H ₆ CDD 1,2,3,4,6,7,8-H ₇ CDD O ₈ CDD 2,3,7,8-T ₈ CDF 1,2,3,7,8-P ₈ CDF 2,3,4,7,8-P ₈ CDF 1,2,3,4,7,8-H ₆ CDF 1,2,3,4,7,8-H ₆ CDF 1,2,3,4,6,7,8-H ₆ CDF 1,2,3,4,6,7,8-H ₆ CDF 1,2,3,4,7,8,9-H ₆ CDF 1,2,3,4,7,8,9-H ₆ CDF 0 ₈ CDF USCOP U	1,2,3,7,8,9-H ₆ CDD 0,00015 1,2,3,4,6,7,8-H ₇ CDD 0,00015 O ₆ CDD 0,00052 2,3,7,8-T ₆ CDF 0,00010 1,2,3,7,8-P ₅ CDF 0,00015 1,2,3,4,7,8-P ₅ CDF 0,00015 1,2,3,4,7,8-H ₆ CDF 0,00031 1,2,3,4,7,8-H ₆ CDF 0,00010 1,2,3,4,6,7,8-H ₆ CDF 0,00010 1,2,3,4,6,7,8-H ₆ CDF 0,00010 1,2,3,4,6,7,8-H ₆ CDF 0,00010 1,2,3,4,7,8,9-H ₆ CDF 0,00021 0 ₆ CDF 0,00031 US英类测定浓度 单位: ngTEQ/Nm ² 平均含氧量 (%) 11%含氧量核穿后二磨灰浓度	1,2,3,7,8,9-H ₆ CDD	1.2,3,7,8,9-H ₆ CDD 0.00015 N.D.(<0.00015) ×0.1 1,2,3,4,6,7,8-H ₅ CDD 0.00015 N.D.(<0.00015) ×0.01 O ₆ CDD 0.00052 N.D.(<0.00052) ×0.001 2,3,7,8-T ₆ CDF 0.00010 0.0095 ×0.1 1,2,3,7,8-P ₅ CDF 0.00052 0.0071 ×0.05 2,3,4,7,8-P ₅ CDF 0.00015 0.019 ×0.5 1,2,3,4,7,8-H ₆ CDF 0.00031 N.D.(<0.00031) ×0.1 1,2,3,6,7,8-H ₆ CDF 0.60010 N.D.(<0.00010) ×0.1 1,2,3,7,8-H ₆ CDF 0.00015 N.D.(<0.00010) ×0.1 1,2,3,4,6,7,8-H ₆ CDF 0.00010 N.D.(<0.00010) ×0.1 1,2,3,4,6,7,8-H ₆ CDF 0.00021 N.D.(<0.00010) ×0.1 1,2,3,4,6,7,8-H ₆ CDF 0.00021 N.D.(<0.00010) ×0.1 1,2,3,4,6,7,8-H ₆ CDF 0.00021 N.D.(<0.00021) ×0.01 0 ₆ CDF 0.00031 0.017 ×0.001

附件 高分辨气相色谱-质谱仪分析原始记录

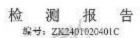
	样品类型		有组织废气		
样品编号		FZK2401500206	取样量(Nm ^J)	1.87	
		檢出限	組份浓度	毒性当量浓度	
	二噁英类	单位:ng/Nni ⁻	单位:ng/Nm³	I-TEF	单位; ngTEQ/Nm
10	2,3,7,8-T ₄ CDD	0.000016	0.0026	*1	0.0026
多氯	1,2,3,7,8-P ₅ CDD	0,00016	N.D.(<0.00016)	×0.5	0.000040
代言	1,2,3,4,7,8-H ₆ CDD	0.00011	N.D.(<0.00011)	×0.1	0.0000055
未并-	1,2,3,6,7,8-H ₆ CDD	0.00027	N.D.(<0.00027)	×0.1	0.000014
对-二	1,2,3,7,8,9-H ₅ CDD	0.00016	N.D.(<0.00016)	×0.1	0.00000080
海災	1,2,3,4,6,7,8-H;CDD	0.00016	N.D.(<0.00016)	×0.01	0.000000080
	O ₈ CDD	0.00053	N.D.(<0.00053)	×0.001	0.000000026
	2,3,7,8-T ₆ CDF	0.00011	0.017	×0.1	0.0017
	1.2,3,7,8-P ₅ CDF	0.000053	N.D.(<0.000053)	×0.05	0.0000013
2	2,3,4,7,8-P ₅ CDF	0.00016	0.0099	×0.5	0.0050
市員	1,2,3,4,7,8-HaCDF	0.00032	N.D.(<0.00032)	×0.1	0.000016
他二	1,2,3,6,7,8-H ₆ CDF	0.00011	N.D.(<0.00011)	×0.1	0.0000055
苯并	1,2,3,7,8,9-H ₆ CDF	0.00016	N.D.(<0.00016)	×0.1	0.0000080
以 物	2,3,4,6,7,8-H ₆ CDF	0.00011	N.D.(<0.00011)	×0.1	0.0000055
	1,2,3,4,6,7,8-H ₂ CDF	0.00027	0.043	×0.01	0.00043
	1,2,3,4,7,8,9-H ₇ CDF	0.00021	N.D.(<0.00021)	×0.01	0.0000010
	O ₈ CDF	0.00032	0.018	×0.001	0:000018
-6	工理英类测定浓度 单位:	ngTEQ/Nm ³	0.0099		
2	平均含氧量 (%)		7.4		
	11%含氧量換算后二項	是英 侬度	0.0073		
	[注] N.D.指	低于検出限。计算毒性等	当量浓度时以 1/2 检川限	it.	

附件 高分辨气相色谱-质谱仪分析原始记录


	样品编号		环境空气		
	(+nr94 5	KZK2401500101	取样量(Nm³)		734
二噻英类		检出限	组份恢度	毒性当量浓度	
		单位:pg/Nm²	单位:pg/Nm*	I-TEF	单位: pgTEQ/Nm
100	2,3,7,8-T ₄ CDD	0.00027	N.D.(<0.00027)	AI.	0.00014
多氰	1,2,3,7,8-P ₃ CDD	0.00068	N.D.(<0.00068)	×0.5	0.00017
70-	1,2,3,4,7,8-H ₅ CDD	0.00041	N.D.(<0.00041)	×0.1	0.000020
	1,2,3,6,7,8-H ₃ CDD	0.00027	N.D.(<0.00027)	×0.1	0.000014
对-	1,2,3,7,8,9-H ₄ CDD	0,00014	N.D.(<0.00014)	×0.1	0.0000070
場英	1,2,3,4,6,7,8-H-CDD	0.00041	0.14	×0.01	0.0014
	O ₅ CDD	0.00027	0.36	×0.001	0.00036
	2,3,7,8-T ₄ CDF	0.00014	0.012	×0.1	0.0012
de	1,2,3,7,8-P ₅ CDF	0.00041	N.D.(<0.00041)	×0.05	0.000010
25	2,3,4,7,8-P ₃ CDF	0.00041	0.050	×0.5	0.025
水氣	1,2,3,4,7,8-H ₆ CDF	0.0014	N.D.(<0.0014)	×0.1	0.000070
代二	1,2,3,6,7,8-H ₆ CDF	0.00327	N.D.(<0.00027)	×0:1	0.000014
苯并	1,2,3,7,8,9-H _t CDF	0.00054	N.D.(<0.00054)	×0.1	0.000027
呋喃	2,3,4,6,7,8 H ₂ CDF	0.00027	0.075	×0.1	0.0075
	1,2,3,4,6,7,8-H;CDF	0.00041	0.42	×0.01	0.0042
	1,2,3,4,7,8,9-H ₇ CDF	0.00027	0.087	*0.01	0.00087
	O ₈ CDF	0.00068	0.25	×0.001	0.00025
-0	工吧英类测定浓度 单位:	pgTEQ/Nm³	(.041	7

此页面以下空白

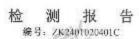
附件 高分辨气相色谱-质谱仪分析原始记录


	样品类型		环境空气		
样品编号		KZK2401500102	取样星(Nm')	7	36
		检出限	组份浓度	毒性当量浓度	
	二噁英类	华位:pg/Nm'	并位:pg/Nm²	I-TEF	单位: pgTEQ/Nm
18	2,3,7,8-T4CDD	0.00027	N.D.(<0.00027)	*1	0.00014
多 额	1,2,3,7,8-P ₅ CDD	0.00068	N.D.(<0.00058)	×0.5	0.00017
70.	1,2,3,4,7,8-H ₆ CDD	0.00041	N.D.(<0.00041)	×0.1	0.000020
	1,2,3,6,7,8-H ₆ CDD	0,00027	N.D.(<0.00027)	×0.1	0.000014
对	1,2,3,7,8,9-H ₆ CDD	0,00014	N.D.(<0.00014)	×0.1	0.0000070
場英	1,2,3,4,6,7,8-H ₂ CDD	0.00041	0.041	×0.01	0.00041
	OtCDD	0.00027	N.D.(<0.00027)	×0.001	0.00000014
	2,3,7,8-T ₄ CDF	0.00014	N.D.(<0.00014)	×0.1	0.0000070
-	1,2,3,7,8-P+CDF	0.00041	N.D.(<0.00041)	K0.05	0.000010
2	2,3,4,7,8-P ₅ CDF	0.00041	0.035	×0.5	0.018
市気	1,2,3,4,7,8-H ₃ CDF	0.0014	N.D.(<0.0014)	×0.1	0.000070
代二	1,2,3,6,7,8-H ₂ CDF	0.00027	N.D.(<0.00027)	*0.1	0.000014
苯并	1,2,3,7,8,9-H ₉ CDF	0.00054	N.D.(<0.00054)	×0.1	0.000027
呋喃	2,3,4,6,7,8-H ₃ CDF	0.00027	N.D.(<0.00027)	×0.1	0.000014
	1,2,3,4,6,7,8-H ₇ CDF	0.00041	0.098	×0.01	0.00098
	1,2,3,4,7,8,9-H ₂ CDF	0.00027	N.D.(<0.00027)	×0.01	0.0000014
	OcDF	0.00068	N.D.(<0.00068)	×0.001	0.00000034
.0	工學英类測定浓度 单位:	pgTEQ/Nm²	150	1.020	

比页面以下空自

第 18 页 共 36 页

附件 高分辨气相色谱-质谱仪分析原始记录


	样品类型		环境空气		
	样品编号	KZK2401500201	取样量(Nm³)		734
		检出限	組份浓度	毒性当量浓度	
	二锡英类	单位:pg/Nm ³	单位.pg/Nm²	I-TEE	年位: pgTEQ/Nm
40	2,3,7,8-T ₄ CDD	0:00027	N.D.(<0.00027)	*1	0.00014
3 M	1,2,3,7,8-P ₅ CDD	0.00068	N.D.(<0.00068)	×0.5	0.00017
AC=	1,2,3,4,7,8-H ₀ CDD	0.00041	N.D.(<0.00041)	×0.1	0.000020
苯并-	1,2,3,6,7,8-H ₆ CDD	0.00027	N.D.(<0.00027)	×0.1	0.000014
对-二	1,2,3,7,8,9-H ₆ CDD	0.00014	N.D.(<0.00014)	×0.1	0.0000070
學英	1,2,3,4,6,7,8-H ₃ CDD	0.00041	N.D.(<0.00041)	×0.01	0,0000020
	O _E CDD	0.00027	N.D.(<0.00027)	×0.001	0.00000014
	2,3,7,8-T ₄ CDF	0.00014	0.0095	×0.1	0.00095
100	1,2,3,7,8-P ₅ CDF	0.00041	0.012	×0.05	0.00060
2	2,3,4,7,8-P ₅ CDF	0.00041	0.030	×0.5	0.015
北無	1,2,3,4,7,8-H ₃ CDF	0.0014	N.D.(<0.0014)	×0.1	0.000070
代二	1,2,3,6,7,8-H ₂ CDF	0.00027	N.D.(<0.00027)	×0.1	0.000014
茶井	1,2,3,7,8,9-H ₃ CDF	0.00054	N.D.(<0.00054)	×0.1	0.000027
块晴	2,3,4,6,7,8-H ₆ CDF	0.00027	N.D.(<0.00027)	×0.1	0.000014
	1,2,3,4,6,7,8-H ₇ CDF	0.00041	N.D.(<0.00041)	×0.01	0.0000020
	1,2,3,4,7,8,9-H ₁ CDF	0.00027	N.D.(<0.00027)	×0.01	0.0000314
	O ₈ CDF	0.00068	N.D.(<0.00068)	×0.001	0.00000034
-6	工學英类测定浓度 单位:	pgTEQ/Nm ²	10	0.017	9

此页面以下空白

WEEK.

附件 高分辨气相色谱-质谱仪分析原始记录

	样品类型		环境空气		
样品编号		KZK2401500202	取样量(Nm³)		736
		检出限	组份浓度	毒性当量浓度	
	二陽英类	单位:pg/Nm'	单位:pg/Nm ³	I-TEF	单位: pgTEQ/Nm
15	2,3,7,8-T ₄ CDD	0.00027	N.D.(<0.00027)	×I	0.00014
李帆	1,2,3,7,8-P ₃ CDD	0.00068	N.D.(<0.00068)	×0.5	0.00017
代二	1,2,3,4,7,8-H ₆ CDD	0.00041	N.D.(<0.00041)	×0.1	0.000020
苯并-	1,2,3,6,7,8-H ₆ CDD	0.00027	0,028	×0.1	0.0028
对-二 egg u-	1,2,3,7,8,9-H ₆ CDD	0.00014	0.023	×0.1	0.0023
應英	1,2,3,4,5,7,8-H ₂ CDD	0.00041	0.46	×0.01	0.0046
1	O _t CDD	0.00027	2.7	≥0.00L	0.0027
	2,3,7,8-T4CDF	0.00014	0.027	×0.1	0.0027
100	1,2,3,7,8-PsCDF	0.00041	0.033	×0.05	0.0016
2	2,3,4,7,8-P ₅ CDF	0.00041	0.038	*0.5	0.019
多氮	1,2,3,4,7,8-H ₅ CDF	0.0014	0.12	×0.1	0.012
代二	1,2,3,6,7,8-H ₆ CDF	0.00027	0.12	×0.1	0.012
苯并	1,2,3,7,8,9-H ₆ CDF	0.00054	N.D.(<0.00054)	×0.1	0.000027
呋喃	2,3,4,6,7,8-H ₆ CDF	0.00027	0.17	×0.1	0.017
8	1,2,3,4,6,7,8-H ₂ CDF	0.00041	1,4	×0.01	0.014
	1,2,3,4,7,8,9-H ₂ CDF	0.00027	0.18	×0.01	0.0018
	O ₂ CDF	0.00068	1.1	×0.001	0.0011
.0	工學英类测定浓度 单位:	pgTEQ/Nm³	93	0.094	7

此页面以下空白

Z. Zek

第 20 页 共 36 页

附件 有组织废气回收率统计

样品编号	FZK24015	10100
	项目	回收率(%)
采样内标	³⁷ Cl ₆ -2378-TCDD	84
	¹³ C-2378-TCDF	62
ask.	¹³ C-12378-PeCDF	36
10. W	¹³ C-23478-PeCDF	84
	¹³ C-123478-HxCDF	101
	¹⁵ C-123678-HxCDF	100
	"C-234678-HxCDF	98
	¹³ C-123789-HxCDF	84
净化内标	¹³ C-1234678-HpCDF	76
	¹³ C-1234789-HpCDF	80
. /	¹³ C-2378-TCDD	79
186	¹³ C-12378-P⊕CDD	108
25.0	¹³ C-123478-HxCDD	85
100	^D C-123678-HxCDD	92
	¹³ C-1234678-HpCDD	79
	DC-OCDD	51

此页面以下空白

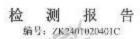
Z PELL

Z EE'

附件 有组织废气回收率统计

样品编号	FZK24015	00102	
	项目	回收率(%)	
采样内标	³⁷ Cl ₆ -2378-TCDD	87	
	¹⁷ C-2378-TCDF	61	
all.	¹ C-12378-PeCDF	79	
	¹⁵ C-23478-PeCDF	78	
	¹³ C-123478-HxCDF	99	
	¹³ C-123678-HxCDF	102	
	² C-234678-HxCDF	102	
	¹³ C-123789-HxCDF	89	
净化内标	¹³ C-1234678-HpCDF	89	
	¹³ C-1234789-HpCDF	77	
and a	¹³ C-2378-TCDD	75	
JET 2	¹³ C-12378-PoCDD	100	
	¹³ C-123478-HxCDD	85	
	¹³ C-123678-HxCDD	91	
	^D C-1234678-HpCDD	75	
	¹³ C-OCDD	49	

此页面以下空白


W. BELL

Z. ZELY

附件 有组织废气回收率统计

样品编号	FZK24015	00103	
	项目		
采样内标	³⁾ Cl ₄ -2378-TCDD	102	
	¹³ C-2378-TCDF	59	
ash.	¹³ C-12378-PeCDI	76	
	¹¹ C-23478-PeCDF	66	
100	¹³ C-123478-HxCDF	107	
	¹³ C-123678-HaCDF	107	
	13C-234678-HxCDF	98	
	¹³ C-123789-HxCDF	88	
净化内标	¹³ C-1234678-HpCDF	84	
	¹³ C-1234789-HpCDF	71	
-1	¹³ C-2378-TCDD	65	
all to	¹³ C-12378-PeCDD	92	
	¹³ C-123478-HxCDD	90	
	¹³ C-123678-HxCDD	91	
	1°C-1234678-HpCDD	72	
	"C-OCDD	47	

此页面以下空白

Z Z Z

The state of the s

Z ZEK

W. E. E.

附件 有组织废气回收率统计

样品编号	FZK24015	00104	
	项目	旦收率(%)	
果样内标	¹⁵ Cl ₄ -2378-TCDD	94	
	¹⁵ C-2378-TCDF	64	
al.	¹³ C-12378-PeCDF	79	
100	¹³ C-23478-PeCDF	74	
	¹³ C-123478-HxCDF	103	
	¹³ C-123678-HxCDF	114	
	¹³ C-234678-HxCDF	100	
	¹³ C-123789-HxCDF	93	
净化内标	¹³ C-1234678-HpCDF	88	
	¹³ C-1234789-HpCDF	70	
. 1	¹² C-2378-TCDD	58	
18	¹³ C-12378-PeCDD	98	
	¹³ C-123478-HxCDD	83	
	¹³ C-123678-HxCDD	95	
	¹¹ C-1234678-HpCDD	72	
	"C-OCDD	47	

此页面以下空白

Z.

Z EEK

Z. Z. Z.

The state of the s

附件 有组织废气回收率统计

样品编号	FZK24015	00105
	項目	回收率(%)
采拌內标	²⁷ CI ₄ -2378-TCDD	96
	¹³ C-2378-TCDF	67
ask.	¹³ C-12378-PeCDF	87
	¹³ C-23478-PeCDF	79
	¹³ C-123478-HxCDF	107
	¹⁷ C-123678-HxCDF	109
	"C-234678-HxCDF	96
	¹³ C-123789-HxCDF	95
净化内标	¹⁵ C-1234678-HpCDF	87
	¹⁵ C-1234789-HpCDF	71
- 1	¹⁵ C-2378-TCDD	76
166	¹³ C-12378-PeCDD	105
	¹³ C-123478-HxCDD	84
	¹³ C-123678-HxCDD	94
	C-1234678-HpCDD	73
	15C-OCDD	49

此页面以下空白

W. Eller

附件 有组织废气回收率统计

样品编号	FZK24015	00106
	项目	互收率(%)
采样内标	¹³ Cl ₄ -2378-TCDD	83
	¹⁵ C-2378-TCDF	61
- W	¹³ C-12378-PeCDF	79
110.11	¹³ C-23478-PeCDF	76
EE	¹³ C-123478-HxCDF	97
	¹³ C-123678-HxCDF	100
	15C-234678-HxCDF	97
	¹⁵ C-123789-HxCDF	87
净化内标	¹³ C-1234678-HpCDF	77
	¹² C-1234789-HpCDF	58
-1	¹² C-2378-TCDD	75
18th	¹³ C-12378-PeCDD	107
E.E.	¹³ C-123478-HxCDD	81
7 300	¹³ C-123678-HxCDD	89
	³ C-1234678-HpCDD	70
	¹³ C-OCDD	45

此页面以下空白

ZZEK

T. E. E. K.

Z ZEX

W. E. E. Y.

附件 有组织废气回收率统计

样品编号	FZK24015	00201	
	项目	回收率(%)	
采样内标	¹⁰ Cl ₄ -2378-TCDD	101	
	¹⁷ C-2378-TCDF	64	
all.	¹² C-12378-PeCDF	80	
	¹¹ C-23478-PeCDF	73	
100	¹³ C-123478-HxCDF	113	
	¹³ C-123678-HaCDF	112	
	13C-234678-HxCDF	102	
	¹³ C-123789-HxCDF	90	
净化内标	¹³ C-1234678-HpCDF	81	
	¹⁷ C-1234789-HpCDF	67	
. 1	¹³ C-2378-TCDD	75	
AET OF	¹³ C-12378-PeCDD	102	
	¹² С-123478-H ₈ CDD	90	
	¹³ C-123678-HxCDD	97	
	³ C-1234678-HpCDD	67	
	17C-OCDD	42	

此页面以下空自

Z ZEL

Z ZEK

T. E. E.

Z ZEK

W. BEEK

附件 有组织废气回收率统计

样品编号	FZK24015	00202
	项目	回收率(%)
采样内标	⁷⁷ СL-2378-ТСDD	90
	¹³ C-2378-TCDF	61
and a	¹³ C-12378-PeCDF	70 / "
	¹³ C-23478-PeCDF	72
	¹³ C-123478-HxCDF	99
	¹³ C-123678-HxCDF	105
	¹³ C-234678-HaCDF	95
	¹³ C-123789-HxCDF	76
净化内标	¹³ C-1234678-HpCDF	67
	¹¹ C-1234789-HpCDF	53
	¹³ C-2378-TCDD	79
all a	¹³ C-12378-PeCDD	97
25.	¹³ C-123478-H _X CDD	87
	¹³ C-123678-HxCDD	92
	¹⁵ C-1234678-HpCDD	49
	13C-OCDD	35

此页面以下空白

Z ZEK

D. E. E. V.

ZZEK

A. B. B.

附件 有组织废气回收率统计

样品编号	FZK240150	00203
	项目	回收率(%)
采样内标	³⁷ CL-2378-TCDD	85
	¹³ C-2378-TCDF	59
al	¹³ C-12378-PeCDF	73
	¹³ C-23478-PeCDF	63
	¹³ C-123478-HxCDF	104
	¹³ C-123678-H _A CDF	101
	¹⁵ C-234678-HaCDF	91
	¹⁵ C-123789-HxCDF	82
净化内标	¹³ C-1234678-HpCDF	62
	¹¹ C-1234789-HpCDF	47
-1	¹³ C-2378-TCDD	73
all the	¹³ C-12378-PeCDD	83
	¹³ C-123478-H ₈ CDD	84
	¹³ C-123678-HxCDD	96
	¹³ C-1234678-HpCDD	47
	"C-OCDD	28

此页面以下空白

Z ZELY

ZEEV

Z. ZEL

2 EEK

W. BELL

附件 有组织废气回收率统计

样品编号	FZK24015	00204	
	项目	回收率(%)	
采样内标	³⁷ Cl ₄ -2378-TCDD	94	
	¹³ C-2378-TCDF	60	
all	¹⁵ C-12378-PeCDF	81	
200	¹⁵ C-23478-PeCDF	75	
	¹³ C-123478-HxCDF	m	
	⁽¹⁾ C=123678-HxCDF	109	
	¹³ C-234678-HxCDF	104	
	¹³ C-123789-HxCDF	88	
净化汽标	¹³ C-1234678-HpCDF	74	
	¹³ C-1234789-HpCDF	56	
. 1	¹³ C-2378-TCDD	79	
AE'S	¹³ C-12378-PeCDD	91	
	¹⁵ C-123478-HxCDD	95	
	¹³ C-123678-HxCDD	95	
	¹³ C-1234678-H _P CDD	57	
	¹² C-OCDD	37	

***此页面以下空白+++

Z EEK

Z PEK

The second

附件 有组织废气回收率统计

样品编号	FZK24015	00205
	项目	回收率(%)
采样内标	²⁷ Cl ₄ -2378-TCDD	84
	¹⁵ C-2378-TCDF	63
at l	¹³ C-12378-PeCDF	85
	¹³ C-23478-PeCDF	76
	¹³ C-1234/8-HxCDF	122
	¹⁵ C-123678-HxCDF	126
	FC-234678-HxCDF	113
	¹⁵ C-123789-HxCDF	100
护化内标	¹² C-1234678-HpCDF	86
	¹² C-1234789-HpCDF	69
. 1	¹³ C-2378-TCDD	81 3 11
JET 8	¹³ C-12378-PeCDD	100
	¹³ C-123478-HxCDD	99
700	^D C-123678-HxCDD	111
	¹³ C-1234678-HpCDD	69
	nC-OCDD	43

此页面以下空白

Z ZEK

Z EEK

Z EEL

Z ZEK

W. BELL

附件 有组织废气回收率统计

样品编号	FZK24015	00206
	項目	回收率(%)
采样内标	³⁷ CI ₄ -2378-TCDD	96
	¹³ C-2378-TCDF	61
- W	¹³ C-12378-PeCDF	701/7
	¹⁵ C-23478-PeCDF	72
18.	¹³ C-123478-HxCDF	108
	¹³ C-123678-HxCDF	114
	15C-234678-HxCDF	108
	¹⁵ C-123789-H _x CDF	83
净化内标	¹³ C-1234678-HpCDF	71
	¹³ C-1234789-HpCDF	61
-1	¹³ C-2378-TCDD	76
35	¹³ C-12378-PeCDD	94
E.E.	¹³ C-123478 41xCDD	89
	¹³ C-L23678-HxCDD	102
	¹¹ С-1234678-НрСDD	60
	"C-OCDD	39

此页面以下空白

Z EEK

W. C. C. C.

T. EEL

Z ZEX

W. B. B.

附件 环境空气回收率统计

样品编号	KZK24015	10100
	项目	回收率(%)
采样内标	³⁷ Cl ₆ -2378-TCDD	94
	¹³ C-2378-TCDF	60
- L	¹³ C-12378-PeCDF	78 //
	¹³ C-23478-PeCDF	70
8	¹³ C-123478-HxCDF	107
	¹⁵ C-123678-HxCDF	109
	LC 234678-HxCDF	104
	^D C-123789-HxCDF	93
净化内标	¹³ C-1234678-HpCDF	85
	¹³ C-1234789-HpCDF	79
. 1	¹³ C-2378-TCDD	79
JEI'S	¹³ C-12378-PoCDD	92
	¹³ C-123478-H ₈ CDD	87
	¹³ C-123678-HxCDD	88
	PC-1234678-HpCDD	78
	TIC-OCDD	47

此页面以下空白

Z ZEL

Z ZEL

Z ZEX

A. E. E.

附件 环境空气回收率统计

样品编号	KZK24015	00102
	項目	旦牧率(%)
采样内标	¹⁷ Cl ₄ -2378-TCDD	100
	¹³ C-2378-TCDF	60
all	¹³ C-12378-PeCDF	78 7
200	¹³ C-23478-PeCDI	69
	¹³ C-123478-HxCDF	103
	¹³ C-123678-HxCDF	104
	¹³ C-234678-HxCDF	100
	¹³ C-123789-HxCDF	90
净化内标	¹⁵ C-1234678-HpCDF	83
	¹⁵ C-1234789-HpCDF	71
	¹³ C-2378-TCDD	.67
A ELITA	¹³ C-12378-PeCDD	93
	¹³ C-123478-HxCDD	80
An	³ C-123678-HxCDD	88
	C-1234678-HpCDD	73
	"C-OCDD	46

此页面以下空白

Z PEL

Z EEK

Z ZEK

Z ZEX

W. ELEK

附件 环境空气回收率统计

样品编号	200	ZK2401500201
	項目	回收率(%)
采样内标	³⁷ Cl ₀ -2378-TCDD	89
	¹³ C-2378-TCDF	64
ash.	¹⁷ C-12378-PeCDF	80-7-
	¹³ C-23478-PeCDF	75
8	¹³ C-123478-HxCDF	100
	¹² C-123578-HxCDF	107
	¹ C-234678-HxCDF	99
	¹² C-123789-HxCDF	84
净化内标	¹³ C-1234678-HpCDF	82
	¹³ C-1234789-HpCDF	69
. /	¹³ C-2378-TCDD	11 15 To V
361	¹¹ C-12378-PeCDD	91
	¹³ C 123478-H ₈ CDD	79
200	¹³ C-123678-HxCDD	81
	¹³ C-1234678-HpCDD	71
	DC-OCDD	44

比页面以下空白

Z E

Z EE'

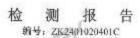
Z. Z. Z.

W. BELLY

附件 环境空气回收率统计

样品编号	KZK24015	00202
	項目	回收率(%)
采样内标	³⁷ Cl ₆ -2378-TCDD	92
	¹³ C-2378-TCDF	63
all	¹³ C-12378-PeCDF	76-7/
100	¹³ C-23478-PeCDF	6.5
	¹³ C-123478-HxCDF	91
	¹⁵ C-123678-HxCDF	94
	¹³ C-234678-HxCDF	89
	¹⁵ C-123789-HxCDF	84
谷化内标	¹³ C-1234678-HpCDF	70
	¹² C-1234789-HpCDF	66
. 1	¹³ C-2378-TCDD	12
180	¹³ C-12378-PeCDD	82
	¹³ C-123478-HxCDD	77
	¹³ C-123678-HxCDD	85
	¹³ C-1234678-HpCDD	63
	"C-OCDD	41

此页面以下空台


Z

Z.EEK

ZEEK

W. EEK

附表 3 检测依据、仪器一览表

检测类别	分析项目	检测依据	检测仪器	
有组织皮气	一項英类	环境空气和废气 二階英类的测定 同位素稀释高分辨气相色谱-高分 等质谱法(HJ 77.2-2008)	高分辨醚及谱-Therme DI'S	
环境空气	二语类类	环境空气和废气 二%类类的测定 间位素稀释高分辨气相色谱-高分 辨质谱法(HJ 77.2-2008)	高分辨陈质锶-Thermo DFS	

报告结束

A RELY

DEEK.

附件 16: 企业防渗防腐验收报告

上杭县生活垃圾焚烧 发电 PPP 项目

质量评估报告

#: J3882

法人代表: 林余 了十二十

技术负责人: 不多多 好

编制单位:安徽远信工程项目管理有限公司

编制时间: 2023年1/月23

上杭县生活垃圾焚烧发电 PPP 项目质量评估报告

受上杭红新能源科技有限公司的委托,本公司项目部于 2020 年 12 月对上杭县生活 垃圾焚烧发电 PPP 项目工程进行了施工过程阶段的全过程监理工作,于 2023 年 11 月 23 日进行了该工程竣工前的预验收工作;现将该工程项目的质量情况评估报告如下。

一、工程权责单位如下:

建设单位: 上杭红新能源科技有限公司

勘察单位:福建省闽东工程勘察院

设计单位:广州华科工程技术有限公司

施工单位。福建省惠一建设工程有限公司

监理单位:安徽远信工程项目管理有限公司

二、工程质量评估依据:

- 1、设计图纸,设计变更通知单,图纸会审记录。
- 2、建设工程施工合同和建设工程监理合同。
- 3、《建筑工程施工质量验收统一标准》GB50300-2013
- 4、《建筑地基基础工程施工质量验收规范》GB50202-2018
- 5、《砌体结构工程施工质量验收规范》GB50203-2011
- 6、《混凝土结构工程施工质量验收规范》GB50204-2015
- 7、《屋面工程质量验收规范》GB50207-2012
- 8、《地下防水工程质量验收规范》GB50208-2011
- 9、《建筑地面工程施工质量验收规范》GB50209-2010
- 10、《建筑装饰装修工程施工质量验收规范》GB50210-2018
- 11、《建筑给水排水及采暖工程施工质量验收规范》GB50242-2002
- 12、《建筑电气工程施工质量验收规范》GB50303-2015
- 13、《混凝土质量控制标准》GB50164-2011
- 14、《钢筋焊接及验收规程》JGJ18-2012
- 15、《钢筋焊接接头试验方法》JGJ/T27-2014
- 16、《普通混凝土配合比设计规程》JGJ55-2011

- 17、《砌筑砂浆配合比设计规程》JGJ/T98-2010
- 18、《建筑施工安全检查标准》JGJ59-2011
- 19、《建筑机械使用安全技术规程》JGJ33-2012
- 20、《施工现场临时用电安全技术规范》JGJ46-2005
- 21、《建筑节能工程施工质量验收规范》GB50411-2019
- 22、《建筑结构荷载规范》 <G85009-2012>
- 23、《建筑抗震设计规范》 (GB50011-2010) (2016 年版)
- 24、国家颁布的有关政策、法令; 建筑材料质量管理现行规程及有关技术标准。

三、工程概述:

上杭县生活垃圾焚烧发电 PPP 项目场地位于龙岩市上杭县临城镇土埔村。本工程建筑 用地面积 6.4006 公顷,总建筑面积:24622.91 m',计容建筑面积:28101.83 m',建筑占 地面积:14259.76 m'。主要新建:主厂房、综合楼、综合水泵房/冷却塔、渗沥液处理站、油罐区、飞灰养护车间、门卫室、氨水罐区、地磅房、生产/消防水池、坡道、初期雨水 收集池/事故池和烟囱。

各栋单体建筑规模如下表:

单体名称	建筑面积 (n2)	建筑占地面积 (n2)	建筑高度(n)	±0.00以上层数	±0.00以下层数
主厂房	18143.02	8591, 45	49. 3	1 (局部6)	0
综合楼	3284. 31	1093.89	15. 2	4	0
综合水泵房	554. 4	585.9	18.6	1	0
渗沥液处理站	2200	1505. 73	12.0	2	0
油罐区	25	75, 5	4.8	1	0
飞灰养护车间	336	336	6. 8	1	0
门卫室	52.8	46, 64	5, 3	1	0
氨水罐区	123, 19	123. 19	8, 3	1	0
地磅房	33, 54	33, 54	3.9	1	0
生产/消防水池	1	414.24	1	1	1
初期雨水收集 池/事故池	1	200	1	1	0
烟囱	1	64	100 .	1	1
坡道	1027. 52	1027. 52	14. 5	1	0

本工程主厂房、氨水罐区为现浇钢筋混凝土框排架,综合水泵房/冷却塔为框剪结构, 生产/消防水池、初期雨水收集池、烟囱为剪力墙结构,坡道为钢结构,其余单体为框架 结构。抗震设防烈度6度,建筑结构安全等级为二级,建筑耐火等级为二级,主厂房、坡 道火灾危险性类别为丁类,油罐区火灾危险性类别为乙类,渗沥液处理站、飞灰养护车间、 烟囱火灾危险性类别为戊类,氨水罐区火灾危险性类别为丙类,其余单位无火灾危险性类 别要求。主厂房砼屋面防水等级为 I 级、钢屋面防水等级为 I I 级、地下室防水等级为 级,综合楼、渗沥液处理站、油罐区、氨水罐区、地磅房、门卫屋面防水等级为 I 级,飞 灰养护车间、烟囱、坡道屋面防水等级为口级。

四、工程概况:

(1) 基础、主体分部砼设计等级如下:

本工程飞灰养护车间和地磅房为独立基础,生产/消防水池和初期雨水收集池/事故池 为筏板基础,其余单体均为桩基础,成桩形式为旋挖机成孔。主厂房、烟囱地基基础设计 等级为乙级,坡道地基基础设计等级为甲级,其余单体地基基础设计等级均为丙级。本工 程桩端持力层为中风化粉砂岩,飞灰养护车间基础持力层为碎块状强风化粉砂岩,地磅房、 初期雨水收集泡/事故泡基础持力层为中风化粉砂岩,生产/消防水池基础持力层为全风化 粉砂岩。

	部位	桩基分项	基础结构	主体结构
	主厂房 C35P8		C40、C40P8、C45P8	C35, C40, C40P8, C45P8
	综合楼	C35P8	C30	C30
	综合水泵房	C35PB	C30	C30
	渗沥液处理站	C35P8	C35P8、C30	C30、C40、C40PB
Mary April	油罐区	C35P8	C30	C30
混凝	飞灰养护车间	1	C30	C30
土强	门卫室	C35P8	C30	C30
度等	氨水罐区	C35P8	C30	C30
级	地磁房	1	C30	C30
	生产/消防水泡	1	1	C30P6
	初期雨水牧集池/事故池	1	1	C30P6, C35P6
	烟囱	C35P8	C30	C30
	坡道	C35P8	C30	C30
			(2.1/2)	1,477

(2)砌体工程: 非承重的砌体外维护墙和内隔墙采用 WM_M7.5 专用砂浆砌筑 B07 (A5.0) 加气混凝土砌块。

2、装修分部工程:

(1) 室内装修

- ①、内墙面: 主要为硅酸盐无机涂料内墙面、贴砖内墙面等;
- ②、天棚: 主要为硅酸盐无机涂料顶棚、铝合金方板吊顶等;
- ③、门窗:主要为铝合金窗,玻璃有防火玻璃、镀膜钢化玻璃、中空玻璃、铝合金防雨百叶窗。
 - ④、楼地面: 细石混凝土地面、彩色耐磨混凝土地面、金刚砂耐磨混凝土地面。
 - ⑤、竭脚: 水泥砂浆踢脚线、地砖踢脚线。

(2)、外墙

主要为硅酸盐无机涂料外墙面、真石漆外墙面、仿石砖外墙面、双层彩钢板外墙面。3、屋面分部工程;

主要有压型钢板复合保温屋面(II级防水)、不上人柔性防水屋面(I级防水)、上人柔性防水屋面(I级防水)。

4、建筑给、水排水分部工程:

(1)、生活给水:

①、本工程生活水源为一条 DN80 市政自来水引入综合水泵房内生活水箱,由生活水箱供厂区内各单体生活的水源。

- ②、消防给水,厂区消火栓灭火系统采用室内、外消火栓合用的临时高压消防供水系统,消防灭火系统用水量按需水量最大的主厂房计算。室内、外消火栓灭火系统用水量为60L/s(216m3/h),供水量和水压由消防水池及室内、外消火栓灭火系统全自动气压供水设备保证。厂区消防水泵设于综合水泵房内,消火栓灭火系统配主消防泵2台,1用1备,额定供水量为Q=216m3/h,额定扬程为P=0.80 MPa,电机功率为75KW。配稳压泵2台,1用1备。额定供水量为Q=5.4m3/h,额定扬程为P=1.40MPa,电机功率为4 KW;配气压罐1个。此外,在主厂房分设有效容积为18m3的高位消防水箱,确保满足初期火灾的消防用水量。该消火栓供水系统能满足本单体栓口压力及水枪充实水柱的要求。
- (2)、生活排水;采用雨、污分流制,厨房与卫生间的排水立管分别设置。
- ①、生活污水排水:生活用水排至厂区污水管网,经厂区生活污水处理设施处理达到 《城市污水再生利用工业用水水质》GB/T19923-2005,回用作厂区循环冷却水补充用水。
 - ②、雨水排水:屋面雨水由排水立管引下,经地面散水排至综合楼区域下凹式绿地。

5、建筑电气分部工程:

- (1) 本工程室外消防用水量大于 30L/s, 除除备用照明为交流保安(0III) 类负荷, 疏散照明、消防负荷
- 为二级负荷外, 其余均为三级负荷。
- (2) 正常照明:正常照明电压采用 AC220V, 由低压配电问照明配电柜引来, 按防火分区、功能分区 采用放射式配电。
- (3)备用照明:控制室、继保室、配电间等主厂房内重要场所均装设备用照明,照明电压为 MC220V, 从备用照明屏引来。正常时由低压厂用段供电。当交流电源失电时,由交、直流逆变切换装置自动 切换至蓄电池直流母线供电。另在中央控制室设置直流长明灯,由直流馈线屏直接供电。
- (4) 疏散照明:主厂房内的重要辅助车间、疏散通道、疏散楼梯等处采用集中控制自带蓄电池型应急灯。发生火灾时,应急照明控制器接收应急转换联动控制信号,进入应急模式,使连接的灯具转入应急状态,并发出反馈信号。
- (5) 檢修照明:供锅炉本体、金属容器检修用的携带式作业灯, 其电压应为 12V, 检修时采用安全隔离变压器降至安全电压使用。
- (6)空调通风:对空调和风机设备按功能分区进行配电设计,消防排烟风机采用双电源末端切换后供电。

(7)、防雷

- ①、采用 φ 12 热镀锌圆钢作接闪带、接闪杆, 沿屋角、屋脊、屋檐和檐角等易受雷击的部位 敷设。用-25x4 热镀锌扁钢与接闪带焊接并暗敷在屋面组成 10m×10m 或 12m×8m 的网格。
- ②、本建筑低压配电系统,要求接地电阻不大于 1Ω,施工过程中,应分阶段多次实测接地电阻值,实测不满足要求时应增设人工接地极或采取其他降低接地电阻的措施。PE 汇流排与预理接地端子板的连接采用多股铜芯软线,其截面积与配电箱电源进线的 PE 线相同。

6、节能分部工程:

本工程综合楼和门卫涉及节能工程:上人屋面采用 50mm 挤塑聚苯乙烯泡沫塑料板保 温层,不上人屋面采用 75mm 挤塑聚苯乙烯泡沫塑料板保温层;外墙采用蒸压加气混凝土 砌块及 25 厚岩棉板;外窗采用 6mm 中透光 Low-E+12 空气+6 透明玻璃+多腔塑钢型材;抗 风压性能≥2500Pa,气密性≤0.5~1.5 【m/(h.m)】,水密性≥350Pa,保温性能≤2.5~3.0/ 【W/(m.k)】.

7、通风空调分部工程:

通风与空调主要由空调系统、通风系统、防排烟系统组成。

- ①空调系统: 所有空调房间均采用分体式空调机,新风通过外窗自然进风。
- ② 通风系统:综合楼宿舍卫生间排风设备为天花板管道式换气扇,公共卫生间排风设备为联动百叶窗式排风扇。其他房间及楼梯间均利用可开启的外窗自然通风。
 - ③、防排烟系统:综合楼房间及楼梯间均采用开启外窗自然排烟。

8、智能建筑分部工程:

本工程智能建筑系统有火灾自动报警系统、消防联动控制系统、火灾应急广播、消防 直通对讲电话系统等,在主厂房二层设置消防控制室。消防控制室控制设备由火灾报警控 制主机、联动控制台、CRT 显示器、打印机、应急广播设备、消防直通对讲电话设备和电 源设备等组成,上述设备由专业厂家成套提供。消防控制室接收感烟、感温、可燃气体等 探测器的火灾报警信号及水流指示器、压力报警阀、手动报警按钮、消火栓按钮的动作信 号。显示消防水池、消防水箱水位,显示消防水泵的电源及运行状况。显示所有火灾报警 信号和联动控制状态信号,能控制所有与消防有关的重要设备,并与上一级消防控制中心 联网。

五、按图施工及重大设计变更的执行情况:

本工程项目在施工全过程中能够按设计施工图纸要求和建设工程施工合同或设计变 更通知单以及建设单位根据实际使用功能需要组织施工,且能够按照建设单位的实际使用 功能要求作出局部修改和作出临时变更设计要求进行施工,同时取得了相关单位人员确认 同意,且有及时办理了相应的变更手续。

六、分部、子分部、分项、检验批工程质量验收记录核查情况: 各分部分项检验批评定如下表:

6.1 主厂房、综合楼、综合水泵房、渗沥液处理站、油罐区、飞灰养护车间、门卫室

76	分部 工程	子分部 工程名	分項工程	检验批數					验收结论		
47	名称	称	名称	主厂房	综合核	综合水 泵房	港沥液 处理站	油罐区	飞灰养 护车间	门卫家	合格
		THE PARTY.	钢筋迟疑土扩 展基础	90	11	12	28	12	10	12	合格
	地基	基础	干作业成孔。 潜注柱基础	10	3	2	5	1	1	1	合格
1	行 組	土石方	土方开挖	4	1	1	1	1	1	1.	合格
	100	3440	土方回填	2	1	1	1	1	1	1	合格
		地下防水	主体结构防水	2	1	4	6	17	1	1	合格

			模板	45	9	-11	15	3	3	1	合格
		混凝土	钢筋	180	36	13	45	11	6	7	合格
		结构	混凝土施工	45	9	5	15	3	3	2	合格
			現流结构	45	9	5	15	3	2	1	合格
		砌体结构	填充墙砌体	15	4	5	3	1	1	1	合格
	l,		網构件焊接	6	8	1	3	Ž	1	1	合格
			紧固件连接	10	1	1.	3	1	2	1	合格
2	主体结构		例零部件加工	5	1	×.	3	1	1	1	合格
			钢构作组装及 预排装	8	7	1	3	1	1	7	合格
		钢结构	单层钢结构安 装	4	1	1	3	Ł.	1	1	合格
			销管结构安装	4	7	1	7	1	1	1	合格
			压型钢板	8	1	1	1	7.	1	7	合格
			防腐涂料涂装	8	1	1	3	7	1	1	合格
			防火涂料涂装	8	7:	7	3	7	1	7	合格
			基层領设	5	4	2	1	6	1	1	合格
			整体铺设	4	1	2	1	2	1 / 合 1 / 合 1 / 合 1 / 合 1 / 合 1 1 合 1 / 合 1 / 合 / 1 合 / 1 合 / 1 合	合格	
		建筑地面	板块铺设	17	4	1	7	1		合格	
			本、竹面层铺设	1	1	1	1	1		合格	
		抹灰	一般抹灰	18		2	合格				
			木门窗安装	3	11	1	1	1	7	1	合格
			金属门窗	Б	4	1	2	1	/ 1 合格 / / 合格 5 2 合格 / / 合格 2 2 合格	合格	
		口選	特种门	6	1	1	1	1	1	1	合格
			门窗玻璃	6	4	1	2	1	1	1	合格
3			整体吊顶	4	4	7	1	1	7	1	合格
	表饰	后面	板块面层吊顶	3	1	1	7	1	7	1	合格
	装修 工程		台板	1	7	1	1	1	7	1	合格
	- CT 1975	1000000000000	金属板	1	F	7	7	1	7	1	合格
		竹面板	木板安装	2	1	7	1	1	7	7	合格
			塑料板安装	1	1	1	1	7	7	1	合格
			外境饰面砖	7	1	7	4	1	7	7	合格
		物面荷	内境饰面砖	3	4	1	I	1	1	1	合格
		外地及其 他防水	外墙防水砂浆	1	7	7	7	3	7	1	合格
		終策	水性涂料涂饰	15	8	7	9	4	5	1	合格

		春塘	玻璃幕垛安装	1	1	1	1	7	1	1	合格
		細部	护栏和扶手 制作与安装	1	1	i	1	1	1	1	合格
		基层与保	找坡与找平层	4	4	2	4	2	1	3	合格
	9	\$P	陪商应	2	7	t	1	1	7	1	合格
		保溫与隔	板状材料保湿 湿	2	2	1	2	1	2	1	合格
		M	纤维材料保温 层	1	1	1	170	1	1	7	合格
4	屋面	防水与密 封	卷材防水层	2	2	1	1	1	1	1	合格
-	工程	瓦面与板 面	金属板铺装	3	7	7	1	1	1	d	合格
			續口	1	2	1	1	1	1	1	合格
			槽沟和天沟	1	2	1	2	1	1	1	合格
		细部	女儿燎和山墙	2	1	1	2	1	7	1	合枠
		构造	水落口	2	2	1	2	1	1	-	合格
			屋面出入口	1	7	1		7	7	7	合格
			屋管	110	1	1	1	7	1	1	合格
			给水管道及配 件安装	б	4	5	7	1	2	1	合格
			给水设备安装	1	1	2	1	1	1	1 1 1 1 7 1 7 7	合格
		ater de la la	室内消火栓系 统安装	6	4	1	4	7	1 /	合格	
		室内给水系统	消防喷淋系统 安装	6	4	1	7	1			合格
			防腐、绝热	6	- 8	9	1	1	1	2	合格
			管道冲洗,消毒	6	1	3	1	1	1	1	合格
	建筑		试验与调试	6	2	6	7	7	1	1	合格
5	始排 水		排水管道及配 件安装	4	4	4	2	1	4	1	合格
	1.0315	室内排水 系统	而水管道及配 件安装	17	1	1	10	2	5	1	合格
		Jane	防腐	4	4	1	- 7	1	1	1	合格
			试验与调试	2	5	4	1	1	1	2	合格
			卫生器具安装	3	4	1	1	7	1	1	合格
		正生	卫生器具给水 配件安装	3	4	1	1	1	1/3	1	合格
		25月	王生器具排水 管道安装	3	4	st.	1	Z	1	1	合格
			试验与调试	3	4	1	1	1	1	1	合格
			成套配电柜、控 制柜(台、箱)和 配电箱(盘)安 装	1	1	1	7	7	1	7	合格
5	建筑电气	电气动力	导管敷设	1	1	2	1	1	1	1	合格
	32%	365	电缆敷设	1	1	2	1	1	1	7	合格
			导管内穿线和 槽盒内敷线	1	1	2	1	1	1	7	合格

			成套配电框、控 制框(台、箱)和 配电箱(盘)安 装	6	4	2	2	4	1	1	合格
			导管敷设	-6	4	2	2	6	1	1	合格
			电缆敷设	6	-4	2	2	6	1	1	合格
		电气	管内穿线和槽 盒内敷线	6	4	2	2	1	1	1	合格
		題明	电缆头制作,导 线连接和线路 绝缘测试	Б	4	2	2	1	1	1	合格
			普通灯具安装	6	4	2	1	5	1	1	合格
			专用灯具安装	6	- 4	2	I	1	1	1	合格
			开关插座安装	6	4	2	2	2	1	1	合格
		100	建筑物景明通 电试运行	1	1	1	1	1	1	1	合格
			接地装置安装	1	4	1	5	1	1	1	合格
		防雷及接 地装置	防雷引下线及 接闪器安装	7	6	6	1	27	1	2	合格
			建筑物等电位 联结	3	5	1	3	25	1	1	合格
			风管与配件 产成品	4	17	1	1	1	4	1	合格
		送原	部件产成品	4	1	1	1	1	4	1	合格
		系统	风管系统安装	4	1	d	1	1	4	1	合格
			风机安装	4	1	1	1	1	4		合格
	通风		系统训试	8	_ /	1	2	2	8	1	合格
	与空		风管与配件的 作	7	1	1	2	16	1	1	合格
7	- 70		部件产成品	7	1	1	2	15	1	7	合格
		防排烟	风管系统安装	7	16	1	2	1	1	1	合格
		系统	排烟风口、常闭 王压风口安装	7	1	9	2	1	1	1	合格
			风机安装	7	1	7	2	1	7	7	合格
			系统调试	14	2	1	4	1	2	1	合格
			梯架、托盘、槽 盒和导管安装	1	1	7	7	1	1	1	合格
			线缴敷设	1	1	1	1	1	1	1	合格
	智能		探测器炎设备 安装	1	1	7	1	1	1	1	合格
8	建筑	火灾自动 报警系统	控制器类设备 安装	5	1	1	18	1	7	1	合格
		28 Mr. JR NIE	其他设备安装	1	1	7	1	1	1	1	合格
			系统调试	1	1	7	1	1	1	1	合格
			试运行	1	1	7	1	1	1	1	合格
		AND THE PROPERTY OF THE PROPER	增体节能工程	7	1	1	1	1	1	I	合格
9	能能	囲护 结构	门窗节能工程	#	1	7-	1	7	7	1	合格
			屋面节能工程	1	1	/	1	7	7	1	合格

6.2 氨水罐区、地磅房、生产/消防水池、坡道、初期雨水收集池/事故池、烟囱:

序	分部工程名	子分部工程名称	分項工程名称		检验批	数	验收结
号	粉	1.00 89.17 (20-40)	77.9LL在476	氨水罐区	地磅房	坡道	合格
		基础	钢筋焊旋士扩展基础	10	10	6	合格
	Loggiages:	defel	干作业成孔灌注桩基础	7	1	1	合格
1	地基与 基础	122	土方开挖	1	1	1	合格
		土石方	土方巨塔	1	1	1	合格
		地下防水	主体结构防水	1	1	1	合格
			模板	1	2	7	合格
		1000000	49.05	2	4	14	合格
		混凝土结构	视凝土施工	1	2	7	合格
			现绕结构	1	2	7	台格
		砌体结构	填充壕砌体	1	2	1	合格
			纲构件焊接	1	7	1	合格
į	主体结构		層面件连接	2	1	2	合格
			钢琴部件加工	1	1	1	合格
		ATT CALLS	铜构件组装及预排装	1	1	1	合格
		钢结构	单层钢结构安装	i	1	1	合格
			压型钢板	1	7	1	
			防腐涂料涂装	1	1	1	合格
			防火涂料流装	1	7	1	合格
			基层铺设	1	1	1	合格
		建筑	整体補设	1	1	2	合格
		地面	板块铺设	1	2	1	合格
		抹灰	一般抹灰	5	Б	56	合格
	1		木门窗安装	7	1	V	合格
		(1)根	金属门窗	1	3	1	合格
			特利门	1	1	₹	合格
			门窗玻璃	12	1	1	合格
	装竹 装修	海 坳	全属幕地安装	1	12	¥	合格
	工程	吊項	州班	7	1	7	合格
	8	竹面板	石板	1	×	1.	合格
		TE 1953	金属板	1	*	1.	合格
		饰面砖	外墙饰面衫	1	2	1.	合格
		arranging.	內場修正符	1	1	1.	- 合格

		維性	水性涂料涂饰	4	5.	L.	会格
		细部	护栏和扶手制作与安装	1	7	1	合格
		基层与保护	找被与我平层	7	2	- /	合格
	1	保贴与隔热	板材料保溫层	7.	1	1	合格
		防水与密封	卷材防水层	7	1	1	合格
4	PETE	无面与板面	金属板铺装	1	1	1	合格
	屋面工程		检口	7	1	1	合格
			横沟和天沟	1	1	V.	合格
		细郁构造	女儿墙和山墙	1	1	1	合格
			水溶口	19	1	1	合格
			屋脊	1	T.	- /	合格
			给水管道及配件安装	2	4	- 1	合格
			室内消火检系统安装	- 1	1	1	合格
		室内给水系统	消防喷淋系统安装	1	1	1	合格
		ACT 3.53 (P.30) (S)	訪腐、绝熱	1	1	1	合格
			管道冲洗、消毒	1	1	1	合格
			试验与谈试	1	1	1	合格
	建筑给排水	1	排水管道及配件安装	2	7	1	合格
5	在规矩件水	室內排水系統	西水管道及配件安装	d	3	1	合格
		= ±00551 (ASSESS	功度	1	7	7	合格
	()		试验与测试	1	1	1	合格
			卫生器具安装	1	1	7	合格
		卫生器具	王生器具给水配件安装	1	1	1	合格
		正土的八	卫生器具排水管道安装	1	-1	7	合格
			试验与调试	1	1	7	合格
			成套配电柜、控制柜(台、 箱)和配电箱(盘)安装	7	Z	7	合格
		电气动力	导管敷设	1	1	1	合格
		47974	电缴敷设	1	7	7	合格
			导管内穿线和槽盒内敷 线	1	7	1	合格
6	建筑电气		成套贴电柜、控制柜(台、 箱)和配电箱(查)安装	1	1	1	合格
			导管敷设	1	1	1	合格
		电气照明	电缆敷设	1	1	1	合格
		er reway	管内穿线和槽食内敷线	i	1	1	合格
			电缆头制作、导线连接和 线器绝缘测试	1	1	1	合格
			普通灯具安装	1	1	1.	合格

	专用灯具安装	1	1	1	合格
	开关插应安装	1	1	1	合格
	建筑物照明通电试运行	1	I:	1	合格
	接地装置安装	1	1	1	合格
防雷及核地装置	防雷引下线及接风器安 装	1	1	3	合格
	建筑物等电位联结	1	1	ot.	合格

七、质量控制资料核查情况:

7.1、主厂房、综合楼、综合水泵房、渗沥液处理站、油罐区、飞灰养护车间、门卫室各单体工程控制资料核查项目、数量等均符合验收规范等要求,详见下表:

序	維位	W445			4	各单体工程((份)		
号	mp tt.	贤料名称	主厂房	综合機	综合水 泵房	海沥液处 理站	油罐区	飞灰养 护车间	TIES
1		据纸会审记录、设计变更通知 单、工程				1	À'		
2		工程定位测量、放线记录	24	5	6	30	2	30	2
3		原材料出厂合格证书及进场检 (试) 遊报告		8		107			
4	建筑与结	施工试验报告及见证检测报告	709	84	97	15	26	3	24
Б	构	裝蔵工程验收记录	313	88	85	164	6	12	18
6		节能隐蔽验收记录	7	5	£	1	1	1	1
7		施工记录	176	13	56	23	17	5	13
8		檢验批、分項、分部(子分部) 工程质量验收记录	550/34 /4 (19)	143/29 /4(16)	92/28/4	207/38/4	72/26/4	54/24/4	48/23/
1		材料、配件、设备出厂合格证 及进场检验、试验报告				20			
2	建筑	管道、设备强度试验、严密性 试验记录	6	2	5	3	3	2	3
3	给排	隐蔽工程验收记录	15	2	5	10	2	3	2
4	水	系统清洗、灌水、通水、通球 试验记录	24	3	15	3	6	3	3
5		检验批、分项、分部(子分部) 工程质量验收记录	39/14/1 (3)	49/14/1 (3)	35/10/1 (2)	27/8/1	2/1/1(1)	12/4/1	13/11/1
1	通风	原材料。部件、设备出厂合格 证书及进场检验、试验报告				5			
2	与空	通风、空调系统调试记录	1	15	1	1	1	1	Ĩ.
3	ill	检验性、分球、分部(子分部) 工程质量验收记录	73/11 /1(1)	28/7 /1(2)	1	20/11 /1 (2)	5/1/1	38/11 /1	i
1	建筑	主要设备、器具、材料合格证 和进场验收记录				45		20000	
2	电气	接地电阻测试记录	2	2	2	2	2	1	2

		绝缘电阻测试记录	1	1	1	1.	1	1	1
3		職截工程验收记录	30	20	9.	11	6	6	6
4		检验批、分项、分部(子分部) 工程质量验收记录	80/12/ 1 (2)	48/12/ 1 (2)	38/20/1	24/12/1	21/17/1	12/12/1	13/12/1
1		材料、设备出厂合格证及进场 检验、试验报告				4			
2		隐蔽工程验收记录	1	1	7	2	1	3	1
3	智能	系统功能测定及设备调试记录	7	7	1	1	1	1	1
4	建筑	系统检测报告	7:	7	7	7	1	1	7
5		检验批、分項、分部(子分部) 工程质量验收记录	12/7/1 (1)	49/19/1 (3)	1	5/5/1 (1)	4/1/1 (1)	5/5/1	7

7.2、氦水罐区、地磅房、生产/消防水池、坡道、初期雨水收集池/事故池、烟囱各单体 工程控制资料核查项目、数量等均符合验收规范等要求,详见下表;

序	部位	- MAY 4-70-			各单体	L程(份)		
큣	THE DAY.	贤料名称	無水 縦区	地傳席	生产/销防水 池	坡道	初期雨水枚集 池/事故池	烟囱
1		图纸会审记录、设计变更通知 单、工程				1		
2		工程定位测量、放线记录	2	2	2	3	2	2
3		原材料出厂合格证书及进场检 (试) 验报告				107		
4	建筑与结	施工试验报告及见证检测报告	13	15	9	73	11	175
5:	构	隐蔽工程验牧记录	32	24	22	58	20	80
6		节能隐薮验收记录	1	1	Zi .	1	7	1
7		施工记录	4	4	6	111	11	81
8		检验批、分项、分部(子分部) 工程质量验收记录	42/24/4	50/21/4	17/7/2 (7)	69/22/4 (8)	17/7/2 (7)	202/11/
1		材料、配件、设备出厂合格证 及进场检验、试验报告			9	20		
2	274	管道、设备强度试验、严密性 试验记录	2	2	E	2	7	1
3	建筑	隐蔽工程验收记录	2	2	1	2	7	Z
4	给排 水	系统清洗, 灌水、通水、通球 试验记录	2	2	1	3	7	7
5	- 400	检験批、分項、分部(子分部) 工程质量吸收记录	6/4/1	11/6/1 (3)	1	2/2/1	¥.	t.
1	建筑	主要设备、器具、材料合格证 和进场验收记录	The state of the s					

2	电气	接地电阻制试记录	2	2	7	2	7	1
3		隐蔽工程验收记录	3	3	1	3	7	7
4		檢验點、分項、分額(子分額) 工程质量验收记录	12/12/1	12/12/1	Ž	13/11/	1	1

7.3 施工试验报告及见证检测报告,经检查符合要求。 1)、主要原材料出厂合格证及检验报告;

材料名称			份数		
10.01-0:10	合格证	厂家检测报告	检测组数	进场复试报告	核查结论
钢筋	79	79	79	59	符合要求
水泥	6	6	6	6	符合要求
- 60 - 10	1	1	3	3	符合要求
专用砌筑砂浆	2	2	2	2	符合要求
蒸压加气温凝土商块	4	4	4	4	符合要求
自粘聚合物改性 沥青防水卷材	3	3	3	3	符合要求
高分子的防水卷材	1	1	1	1	符合要求
as 改性沥青聚氨脂脂 抗根刺防水卷材	i	1	1	1	符合要求
度合物水泥基防水涂料	1	-1	1	1	符合要求
聚氨脂防水涂料	1	9	1	1	符合要求
岩棉板	4	1	1	1	符合要求
挤塑板	3	3	3	3	符合要求
铝合金型材	1	1	1	1	符合要求
中空玻璃	1	1	1	1	符合要求
入户门	1	1	do	1	符合要求
班火门	10	10	1	1	符合要求
栏杆镀铁蓝管	1	1	18	7	符合要求
内境网格布	1	(1)	d	9	符合要求
外墙铁丝网	1	1	1	1	符合要求
内外增腻子粉	1	1	1	2	符合要求
玻纤网格布	1	1	7	7	符合要求
电缆	2	2	2	2	符合要求

电线电缆	14	14	7.	7	符合要求
初火栓箱	1	1	/	1	符合要求
消火栓	1	1	7	-1	符合要求
铜球阀	1	1	χ.	1	符合要求
排气阀	1	1	7.	1	符合要求
电动消防泵组	4	2	1.	- 1	符合要求
消防深控制设备	2	2	1	1	符合要求
物质柜	1	1	7	1	符合要求
採模气压罐	2	2	10	1	符合要求
消防水泵接合器	1	1	7	1	符合要求
地上濟火栓	1.	1	75	1	符合要求
角铜	1	SZ2	- A	1	符合要求
沟槽蜗轮螺阀	4	1	7	1	符合要求
消防信号阀	1	1	7	1	符合要求
水流指示器	1	1	7	7	符合要求
術水喷头	2	2	1	1	符合要求
很式报警阅	1	1	1	1	符合要求
通风管造	2	2	E	7	符合要求
离心式消防排烟风机	1	1	1	7	符合要求
柜式离心风机	1	1	1	1	符合要求
低噪音經濟风机	1	4	1	7	符合要求
防爆低噪音缆流风机	1	1	1	7	符合要求
70°C防火机	2	1	1.	7	符合要求
280℃防火阀	4	1	L	Z	符合要求
止巨阀	3	7	j	7	符合要求
他個单层百叶	1	7	1	7	符合要求
双层百叶	2	1	1	1	符合要求
防雨百叶	1	7	1	1	符合要求
网带影景风	2	1	1	A.	符合要求
金属平导管扣压式 (JDG)	2	1	1	7	符合要求

暗装式金属安装盘	1	1.	1	. /	符合要求
紋型连接用阻燃 B 英耐火軟 电缆	4	4	7	1	符合要求
应急照明集中电源	E	1	1	- 1	符合要求
应急酬明灯	10	1	7.	1	符合要求
应急标志灯	10	F	/	E	符合要求
火灾报警控制器 (联动型)	2	2	1	1	符合要求
联动控制盘	2	21	7	1	符合要求
广播功放录波一体机	1.0		1	18	符合要求
琴台式机柜双组	2	1	1	1	符合要求
总线消防电话	1	1	7	15	符合要求
图形显示装置	1	1	1	.t.	符合要求
点型光电感烟火灾探测器	1	1	1	1	符合要求
点型感温火灾深测器	1	1	1	1	符合要求
手动火灾报警按钮	1	1	7.	10	符合要求
術火栓按钮	1.	1	1	1	符合要求
火灾声光报警器(鶏両型)	1	1	7.	1	符合要求
输入模块	1	1	1 -	1	符合要求
输出模块	1	1	1	· ·	符合要求
输出输入模块	1	1	7	1	符合要求
短路隔离模块	1	7	7.	7	符合要求
总线消防电话分机	1	1	2	1	符合要求
总线消防电话插孔	1	7	1	1	符合要求
消防电话乎柄	1	Y.	£	7	符合要求
消防广播(吸原式)	i	1	i	1	符合要求
消防广播 (壁挂式)	i	1	i	1	符合要求
歷挂式音箱	i	1	1	1	符合要求
防火门脏控器	1	1	7	7	符合要求
通讯转换卡	:1	₩	1.	7	符合要求
防火门监控分机	1	1	1	1	符合要求

防火门常闭模块	1	20	2	1	符合要求
防火门常开模块	13	100	1	1	符合要求
一体式电动闭门器	1	1:		1	符合要求
消防设备电源监控器	1	1.	1	E	符合要求
电气火灾监控设备	1	1	7	E.	符合要求
组合式电气火灾航控探测器	3	3	7.	1	符合要求

2)、砼、砂浆、钢筋连接及工程实体见证检测情况:

a、主厂房、综合楼、综合水泵房、渗沥液处理站、油罐区、飞灰养护车间、门卫室

	24 1 2011	H 156 4 1971	E 44000	4 (30-304))	汉中里州、 (IN WHE IS A	以外开护	delial.	1上至	
				送检数量 (E)			见证检	检测	检节
项目名称	主厂房	综合楼	综合 水泵房	微沥液 处理站	油罐区	飞灰养护 车间	门卫章	親率 (%)	结果	机术
机械连接	92	9	8	18	1	7.	1	100	合格	
单面电 弧焊	13	2	1	4	1	F	2	100	合格	
網絡焊接 接头	69	9	5	40	1	2	2	100	合格	
基础砼 标养试块	285	42	34	97	11	3	7	100	合格	
主体砼 标弊试块	119	13	22	29	6	6	6	100	合格	
用条件 验试块	114	13	22	17	6	6	6	100	合格	
砼抗溶性能 试决	11	3	5	16	1	7	1	100	合格	福建年
从压加气混 凝土增体专 用砂浆			1	2				100	合格	程质量检测名
植筋抗拔承 裁力	2	1	- Ec	¥	€	10	1	100	合格	限公司
门窗物理性 检测				1				100	合格	
桩身完整性 檢測(声波 透射法)	1	31	1 (同重外 附属)	1 (同級外 附属)	1.(国家外的	76	1(開業外 附属)	100	合格	
桩身完整性 检測(低应 变法)	ī	1.	1 (同室外 貯蔵)	1(阿安外 財用)	1(同室外計	10	1(周室外 附属)	100	合格	
单桩基向抗 压检测(单 柱坚向抗压 脖数试验)	1	1	1《阿案外 新興》	1 (同室条 謝層)	1(阿室外射 属)	10	1(同室外	100	合格	

b、氦水罐区、地磅房、生产/消防水池、坡道、初期雨水收集池/事故池、烟囱

项目名称	送检散量 (组)	见证检	拉测	检测	
------	----------	-----	----	----	--

	氨水罐区	地磅房	生产/滑防水 地	规道	初期雨水枚集 池/事故池	如肉	拠率 (56)	结果	机构
机械连接	1	1	18/3	6	2	13	100	合格	
单面电弧焊	1	1	7	2	7	2	100	合格	1
钢筋焊接 接头	1	7	1	7	Ł	Z.	100	合格	
基础论 标养试块	11	3	1	38	1	29	100	合格	
主体砼 标养试块	1	6	3	13	8:	58	100	合格	
同条件 砼试块	1	6	3	13	3	58	100	合格	
砼抗線性能 试块	1	1	3	1	3	3	100	合格	
蒸压加气混 凝土墙体专 月砂浆				2			100	合格	福建省
门窗物理性 檢測				1			100	合格	永正1 程质量
桩身完整性 检測(声波 透射法)	1(同室外 附属)	7	2	1 (同室外 附属)	t	1 (同主厂 房)	100	合格	检测有 限公司
柱身完整性 检測(低应 变法)	1 (同室外 附属)	1	1	1 (阿室外 附属)	7.	1 (阿主厂 房)	100	合格	
单柱竖向抗 压检测〈单 胜整向抗压 静载试验〉	1(同変外 附属)	X	1	1(同室外 料属)	ē	1(同主厂 房)	100	合格	

3)、现场砼施工检测情况

- a、板厚及钢筋保护层厚度偏差均符合设计要求及有关规范规定。
- b、结构标养及同条件砼强度有 C30、C35、C40、C45, 评定结果符合设计及有关规范要求。

八、安全功能检查资料核查记录:

8.1 主厂房、综合楼、综合水泵房、渗沥液处理站、油罐区、飞灰养护车间、门卫室

序	- WEBS	Mercus du Mi.			各年	体工程(份)		
9	项目	资料名称	主厂房	综合楼	総合水 泵房	溶沥液 处理站	油罐区	飞灰券 护车间	印正常
1		桩基承载力检验报告	3	3	3	3	3	1	-3
2		混凝土强度试验报告	176	84	78	143	23	15	19
3	建筑 与结	砂浆型度试验报告	15	4	5	7	3	3	3
4	构	主体结构尺寸、位置抽查记录	30	12	6	10	3	4	3
5		建筑物垂直度、标高、全高测 量记录	3	3	3	3	3	3	3
6		屋面湖水(蓄水)试验记录	- 8	- 4	2	2	2	2	2

7.		有防水要求的地面蓄水试验 记录	3	2	1	7	7	1	1
8		有防水要求的外增面波水检 验记录	1	1	L	1	1	1	1
9		外實气密性、水密性、耐风压 检测报告				1		7.7	
10		建筑物沉降观象测量记录	1	1	1	1	1	1	1
11		节後、保護測試记录	3	1	1	1	7	1	1
1		给水管道通水试验记录	1	1	1	1	1	1	31
2	建筑	卫生器具满水试验记录	3.	1	1	70	7	7	1
3	給排 水	消防管道、燃气管道压力试验 记录	1	1	1	1	1	7	1
4		排水干管道球试验记录	1	1	1	1	1	1	i
ı	道风 与空 调	通风、空调系统试运行记录	T	1	7	ı	1	1	7
1		电气设备(系统)空藏试运行 和负荷	1	1	1	1	1	1	1
2		建筑照明道电试运行记录	1	1	1	1	1	1	1
1	建筑电气	绝缘电阻测试记录	1	1	1	1	1	1	1
t :	5	剩余电流动作保护器(RCD) 测试记录	1	1	1	1	1	1	1
6		接地电阻测试记录	2	2	2	2	2	2	2
1	智能 建筑	系统试运行记录	1	1	2	1	1	1	1

8.2、氨木罐区、地磅房、生产/消防水池、坡道、初期雨水收集池/事故池、烟囱;

序		SECTION OF THE PROPERTY OF	各単体工程 (份)								
号	-	资料名称	製水鐵区	地磅房	生产/骑 防水池	坡道	初期買水收 集油/事故池	烟囱			
1		桩基承载力检验报告	3	7	7	3	- /	3			
2		混凝土强度试验报告	11	15	9	73	11	175			
3	建筑 与结	砂浆强度试验报告	V	1	3	X:	7	-2			
4	构	主体结构尺寸、位置拍查记录	- 3	.3	37	5	1	9			
5		建筑物器直度,标高、全高测 量记录	3	3	7	3	7	9			

6		屋面排水(蓄水)试验记录	2	2	1	2	1	2
70		地下室渗漏水检测记录	25	10	1	7	7	1
8		有防水要求的地面蓄水试验 记录	1	1	1	7	1	1
9		有防水要求的外塘面後水检 验记录	17	1	7	1	7	1
10		抽气(风) 道检查记录	8	1	1	7	1	1
11		外窗气密性、水密性、耐风压 检测报告				1		
12		建筑物沉降观测测量记录	1	1	1	1	1	1
1	建筑 给排	给水管道通水试验记录	1	I.	1	2	1	1
2	*	排水干管通球试验记录	17	1	1	2	2	, it
1		建筑照明通电试运行记录	L	1	1	ī	7	1
2	建筑	建筑照明全负荷试验记录	1	1	7	1	1	1
3	电气	接地电阻测试记录	2	2	2	2	2	2
4		等电位联通导电性测试记录	115	1	7	1	- 7	1

沉降观测:主厂房、综合楼、烟囱沉降观测经委托有测绘资质的核工业江西工程勘察研究总院有限公司测量,其余单体工程由施工员测量,从沉降观测结果分析,所有基础沉降均正常。详见下表:

序号	单体工程	最大沉降量 (mm)	最小沉降量 (an)
1	主厂房	7.2	0.8
2	综合楼	6.3	4.0
3	综合水泵房	6	2.0
4	渗沥液处理站	6, 5	4, 0
5	油罐区	5. 0	4.5
6	飞灰养护车间	16	13
7	门卫室	2	1
8	氨木罐区	3	2
9	地磅房	2	0
10	生产/消防水池	2	0

11	坡道	1	0
12	初期雨水收集池/事故池	2	-0
13	烟囱	6.3	4, 4

九、观感质量评定核查情况:

1、建筑与结构

结构外观:室外墙面;水落管;屋面;室内墙面;室内顶棚;室内地面;楼梯、踏步、 护栏;门窗等观感质量进行全面检查后,评定观感质量为一般。

2、建筑给排水

管道接口、坡度、支架: 检查口、扫除口、地漏等观感进行全面检查后, 评定观感质量为一般。

3、建筑电气

配电箱、盘、板、接线盒;设备器具、开关、插座;防雷、接地等观感质量进行全面 检查后,评定观感质量为一般。

4、通风与空调

风管、支架; 风口、风阀; 风机、空调设备; 管道、阀门、支架等观感进行全面检查后, 评定观感质量为一般。

5、智能建筑

机房设备安装及布局;现场设备安装等观感进行全面检查后,评定观感质量为一般。 均在施工质量验收规范允许偏差范围内,表面观感一般,全部符合要求,质量评价为 合格。

十、工程质量综合评定

1、质量评估意见:

- (1) 单位工程分项、分部的划分,符合要求。
- (2)承包单位能按设计施工图纸、设计变更、施工组织设计和建设单位要求及有关 规范、规程要求组织施工。
- (3)对于关键的施工环节监理人员做到旁站监理,及时将发现的问题以口头或书面的形式通知施工单位进行整改或发出监理工作联系单,经审查基本符合要求,并获得各方的支持。施工过程中严格控制原材料进场检验、工序交接,及时办理工程隐蔽签证,随时

掌握施工现场的质量情况。对监理过程中发现的不合格工序或部位,及时通知承包单位进行整改,直至整改合格后方同意其进入下道工序施工。结合日常施工的旁站、巡视监理, 客观地反映各分项、分部工程质量的验评等级。特别对影响工程结构安全和重要使用功能 的部位,一抓到底,严把质量关。

2、评估结论:

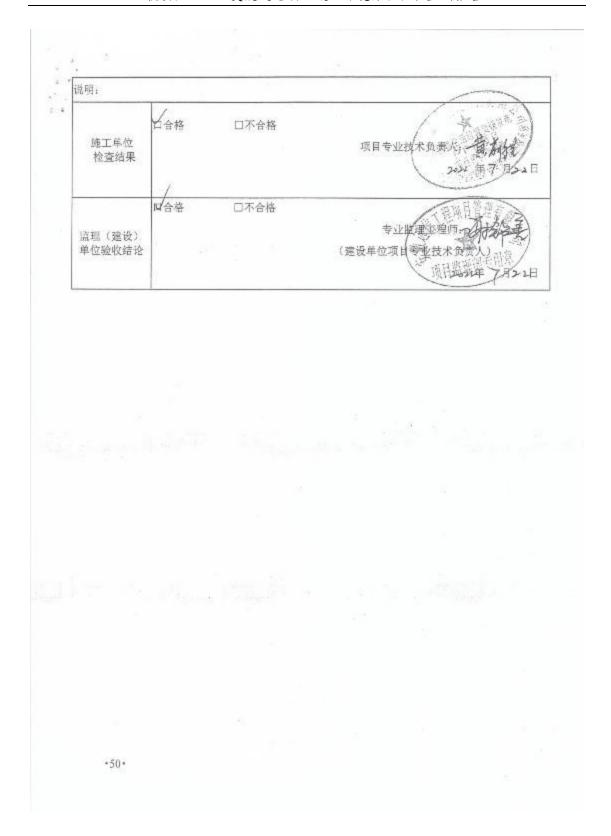
本项目监理部人员对本工程进行了全过程的跟踪监理,参与了该工程施工过程中的工程施工质量的相关隐蔽验收,并对施工单位提交的工程质量保证资料和各项工程质量评定情况进行核查,认定该工程能按施工合同或建设单位约定或实际使用功能要求、设计施工图纸、工程设计变更和相关规范规程规定组织施工,已完成该工程的全部施工工作。本工程主体结构未发现结构聚缝,结构安全、牢固;印证工程质量的技术档案资料基本齐全,有术部位未发现渗漏现象,观感为"一般",经核查各分部工程质量均达合格标准,单位工程质量综合评估为合格,同意验收。

表 C <u>塑料防腐蚀</u>分项工程质量验收记录

	(子单位) [程名称		垃圾焚烧发电 E灰养护车间	PPP 项目	分	部工程	名称		建筑防师	高蚀	
分耳	江程数量	福建省惠	一建设工程有	限公司	to	金验批数	量	1			
Ì	医工单位		一建设工程 公司	项目负责	i人	李芝	で珍	项	目技术负责人	刘景演	
3)包单位		/	项目负责	人	9			分包内容	1	
序	检验书	比名称	检验批容量	部位/区	設		单位 结果	9	监理(单位验		
号	12.02.0					合格	不合	格	合格	不合格	
I		地面 2xm 厚 土工膜	1 间	飞灰贮存 地面	仓	V			V		
2	飞灰养护仓 厚 HDPB	库地面 2mm 土工膜	1 间	飞灰养护 库地面		N			V		
3											
4		2.9									
5				4: 10.000							
6		5376710					17		7-0		
7					T						
8											
9											
说明	l					9.	-		提供工程介。		
	施工单位 检查结果	b/sk	口不合	格		ij	(目を7	上就县一	生活は現英級表現 古中中項目 研教人	景湾 7月2日	
	理(建设) 位验收结论	SAR	口不合	- 格		Jane .	单位项	自专	正程师: id 业技术负责人	3/100	

表 C _ 塑料防腐蚀分项工程质量验收记录

	(子单位) [程名称	上杭县生活	垃圾焚烧发电 一主厂房	PPP项目	分	部工程:	名称		建筑	的腐	蚀	
分耳	页工程数量	福建省惠	一建设工程有	限公司	8	金验批数	景			1	1	
施工单位 福建			省惠一建设工程 有限公司		项目负责人		C珍	项目技术负		责人 刘景演		
3	分包单位		1	项目负责	人	7	00		分包内容		1	
rķ.	io iai	比名称	检验批容量	部位/区	2		単位 结果	监理(建设) 单位验收结;				
号	18.993	W-010	Cir. ov. No.C. and	HP Jant Fast		合格	不合	格	合格/		不合格	
I		间地面 2mm 土工膜	1何	3#危废誓 间地面		N			V			
2									3			
3												
4				0-1								
5												
6												
7												
8												
9												
įĄ.	月:											
	施工单位 检查结果	NA 格	口不会			ij	i F	、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	列号	月50日	
监理(建设) 单位验收结论			LAVE	:15			单位项	H	理工程师。 专业技术员	製	新夏 6 用0 目	


表 C 核脂类防腐蚀分项工程质量验收记录

		5垃圾焚烧发电 -主厂房	PPP项目	分	部工程:	名称	1 9	建筑	筑防腐	蚀	
分功	工程数量	福建省系	8一建设工程有	限公司	村	验批数	康			2	
並	工单位		《一建设工程 限公司	项目负责	· 人 李文珍		项	目技术负	贵人	黄前程	
分	包单位	1	1	项目负责	人	, i			分包内容	T T	1
序	松岭	比名称	检验批容量	部位/区局			单位 结果			理(3 位验书	
号	12.957	Na paragraphic	The state of and	THE SAME PROPERTY.		合格	不合	格	合格		不合格
1		也地面 专涂料	1 间	垃圾池 地面		¥			V		
2		内墙面 专涂料	1间	垃圾池 内墙面		V			V		
3											
4											
5				Heres Land							
e	4	80								1	
7							1.0		100		
8											
9				65							
说明	1				- 500		1		设工程	70	
	施工单位 检查结果	V-14	The State of the S			13	专业	2.技	大 では で に で に で に に に に に に に に に に に に に	高	が発 7月28日
	理(建设) 位验收结论	▽合格	及月野四)	(建设	专) 单位项	旧	型工程师 沙比技术分	贵人	梯基7月28日

表 C 树脂类防腐蚀分项工程质量验收记录

1	位(子单位)上杭县生活垃圾焚炉 工程名称 - 渗沥液如			PPP项目	分	部工程名	A称		建筑	防腐	蚀
分)	页工程数量	1			à	检验批数量 2		2		2	
i	施工单位	福建省惠一建设: 有限公司	L程	项目负责人		李文	李文珍 项目技		目技术负责	人	黄前程
3	分包单位	/		项目负责	人	7	2		分包内容		1
字	杓	验批名称	检验 批容	部位/区	9	施工 检查	単位 结果		2000	里 (建立验收	
号	La	ACCUPATION TO THE	量			合格	不合构	格	合格		不合格
I	級确化池、二 化池、预曝 ² 沉淀池内墙面	水液池、RO 浓液池、二 级反硝化池、一级硝 (池、一级反硝化池、 面及顶棚 PCG-206 改性 能涂层防腐涂料	9 间	内墙面及项	相	Ŋ			/		
2	级硝化池、二 化池、预曝4 沉淀池地面】	收被治、RO 浓液池、二 二级反硝化他、一级硝 (治、一级反硝化他、 *CG-206 改性树脂底涂 果防腐涂料	9 (A)	地面		٧			1		
3	级硝化池、二 化池、预曝~ 沉淀池内墙面	核液池、RD 浓液池、二 二级反硝化池、一级硝 气池、一级反硝化池、 可及頂相 POG-206 改性 中涂层防腐涂料	9 FF	内境面及项	ikii	V	-		1	1	10/48
4	级相化池、二 化池、预曝* 沉淀池地面 /	收液地、RO 終被池、二 二级反确化地、一級騎 气地、一级反确化池。 CG-206 改性树脂中涂 品防腐涂料	9 (6)	地面		5			\bigcup		
ά	级硝化池、 化池、预曝* 沉淀池内境的	收液池、RO 換液池、二 2級反硝化池、一級硝 气池、一級反硝化池。 E及顶槽 POS-208 改性 E涂层防腐涂料	9何	內場面及以	(相)	1	S. Will				Sec.
6	级硝化池。 化池、预曝4 沉淀池地面1	枚複池、RO 浓液池、二 二級反硝化池、一級硝 气池、一級反硝化池、 PCG-206 改性树脂面绿 层防腐涂料	9 (国)	地面		V			J		
7	节池、预加病	可废液收集性、混合调 8区、PH 调整区内墙面 206 改性树脂底涂层防 腐涂料	9 闽	内墙面及顶	ī čiji	J			J		

	初沉池、餐厨废液收集池、混合调			200			
8	节治、预加熱区、PB 调整区地面 POG-206 改性树脂煮涂层防腐涂料	0周	地面	V		V	
9	初究池、餐厨废液妆集池、海合词 节池、预加格区、PH 调整区内墙面 及顶棚 POG-206 改性树脂中涂层防 腐涂料	9 (E)	內場面及顶棚	4		1	
10	初沉池、餐厨废液收集池、混合调节池、預加热区、PI 调整区地面 PCG-208 改性树脂中涂层防腐涂料	9 同	地面	V		V	9
11	初沉弛、餐厨废液收集池、混合调 节池、预加热区、PH 调整区内增加 及项棚 POJ-206 改性树脂面涂层防 腐涂料	9 间	内墙面及项棚	٧		1	
12	初沉池、餐厨废液收集池、混合调节池、预加热区、PH 演整区地图 PCG-206 改性树脂面涂层防腐涂料	9间	地面	v		J	
13	UASB 池内墙面及顶棍 POG-206 改性 树脂底涂层防腐涂料	2 间	内墁面及项相	Ŋ		1	
Ι₫	UASB 袖地面 POG-206 改性树脂底徐 层功腐涂料	2回	地面	V			
15	UASB 池内墙面及顶棚 PCG-206 改性 树脂中涂层防腐涂料	2 闽	内墙面及顶棚	V	Zitha S	V	
16	UASB 拖地面 PCG-206 改性树脂中涂 层防腐涂料	2 阿	地面	V			
17	UASB 他內場面及頂棚 POG-206 改性 树脂面涂层防腐涂料	2 间	内墙面及顶棚	V		V	
18	UASB 池地面 PO3-206 改性树脂面涂 层防腐涂料	2间	地面	d		1	
19	集水井內端面 POG-206 改任树脂底 涂层防腐涂料	1何	内墙面	N		V	- 0/9/5
20	集水井地面 PCG-206 改恒树脂底除 层防腐涂料	1何	地面	1		1	
21	集水井內墙面 PCG-206 改性树脂中 涂层防腐涂料	1河	内墙面	Ý		1	
22	集水井地面 PCG-206 改性树脂中涂 层防腐涂料	1 個	地面	4		J	
23	集水井內墙面 POG-206 改性树脂面 绘层防度涂料	1何	内墙面	4		V	
24	集水井堆面 POG-206 改性树脂面涂 层功腐涂料	1何	地面	Ý			

附件 17: 除臭剂技术说明

除臭除味剂说明书

(植物液除臭剂)

产品概述:

植物液除臭剂采用天然原料,利用低温提取技术从三百多种天然植物提取浓缩配制 所成,利用快速分解中和的原理,瞬间分解臭味分子和产生臭味的各种有机物,将其转化为二氧化碳和水以及微生物细胞成分,从而达到去除臭味的目的。

植物除臭剂用来消除空气中的额领、硫化氢异味,尤其是由有机物做发的恶臭具有优异 的效果。其主要特点是能够迅速消除臭味而不是暂时的掩盖臭味。

植物液产品由纯天然植物提炼,对人体无毒无害,不会引起皮肤或呼吸系统过敏等各种不良 反应,是可靠的、符合国际健康标准的环保产品。

植物类取液可以根据各种不同的工作场合和公共场所,不同的异味源,有针对性的设计 工艺, 清除异味,保持空气环境清洁。

一、产品特点

- 除臭迅速,本品与臭味因子接触后瞬间分解臭味分子和产生臭味的各种有机物。将其转 化为二氧化碳和水以及微生物细胞成分。从而达到去除臭味的目的。
- 2、效果显著: 经国家权或机构检测,本产品对氦的去除率达 95%,对硫化氢甲硫醇去除率达 98%。
- 3、绿色环保;百芬百植物浓凝臭剂是从植物中提取的,产品无毒无害,与各种异味分子迅速反应分解后的产物都是无害物质,如水、氟、氮等。
- 4、使用安全: 本品是一种可生物分解的药剂,经上海化工研究院检测中心、国家安全生产上海危险化学品分类检测检验中心(MSDS)和上海市疾控中心认证,不属易燃易爆危险品; 无氧化剂危险性,不属腐蚀品;不属毒害品。
- 5、使用方便;本产品为水溶性液体与水泥浴,无需专用除臭设备稀释后可直接喷洒即可,也可用喷雾设备喷雾除臭。
- 6、适用性广:植物液除臭剂富含多种有机天然物质成分,产品具有除臭兼有构岗功效,广 谱去除不同场合、不同领域富含硫、领等物质成分的恶臭味。
- 7、使用成本低: 植物液除臭剂常规用量即可达到优异的除臭效果,且保持时间长,无需附加交装昂贵的除臭设备,节约除臭设备频频保养维修的费用。

二、应用领域

- 垃圾处理厂、污水处理厂、污水泵站、污泥脱水、工业废水废气等异味控制;
- 公厕、垃圾收集、压缩、填埋、宽物粪便、堆肥、橡胶油等异味控制;
- 肥料、涂料、皮革厂、橡胶厂、燃料、油漆、屠宰场、炕烧塑料、饲料、造纸厂、印染厂、机械加工、涂装电镀厂、肉类、食品加工厂等工业垃圾异味控制;
- 酒店、大厦等的卫生间、污水房等异味控制

三、建议用法

1、喷雾除臭(适用于空贮范围内的场所异味处理)

以垃圾填埋场厂为例,在垃圾坑的上方安装喷淋装置,按照 150-300 管比例稀释后每天向 倾倒垃圾喷雾除臭剂工作液,其它恶臭问题的处理与上述使用相似。

2、喷淋除臭(适用于工业废气及生活废气的异味处理)

以造纸厂车间为例。在工业废气的收集装置后使用顺滞塔除臭,根据异味的成分不同。可选用多级喷漆塔去除异味,具体工艺由技术人员根据现场情况而定。可将不品工作液添加到喷涂塔循环水中。根据出风量及异味浓度酌情添加。首次添加按照循环水量的 1%到 3%添加。后期根据风量 7 万方以上风量每天补充 3KG。7 万方以下风量每天补充 1kg 到 1.5KG 除臭剂原液。

3、喷洒除臭(适用于场所除臭)

以屠宰场为例。在臭味比较重的场所内。按照 100-200 倍比例稀释后使用喷酒设备直接喷 满到臭味罐头及所内,喷洒次数根据驱场情况酌情而定。

4、直接稀释比例处理污水臭气(适用于污水中及水性产品中)

以污水厂为例,将除臭除味剂原液与发臭的水体混合。有效去除及预防污水发臭。实际用法 用量应要求和臭味环境确定稀释倍数及用量,具体使用事项请咨询百芬百技术人员。

四、注意事项

- 1、本品为植物提取资,通过中和相杀分解除臭,无毒、无副作用、无残留、无二次污染。
- 2, 不可对本品加热, 不可与化学消毒药物混合使用。
- 3、适用环境温度为 0℃-80℃。
- 4、本品久置后会产生少量植物纤维杆出,属正常现象,不影响除臭功能,使用时摇勾即可。
- 5、实际用法用量应要求和臭味环境确定稀释俗数及用量,具体使用事项请咨询百芬百技员。

除臭效果实例(对气体)

臭气成分	处理前浓度 PPM	处理后浓度 感应法
本	1,000	无臭
甲苯	1,000	无臭
二甲苯	1,000	无臭
乙酸乙酯	1,000	无臭
中蘇	2,000	无臭
异丙醇	1,000	无臭
络酸	300	无臭
氨	500	无臭
階酸乙烷基	1,000	无臭
硫化氢	臭气度 5	无臭
甲硫醇	200	无臭
甲(苯)酚	500	无臭
一酸化水素	50	无臭
鱼肠骨臭	臭气度 5	无臭
胺臭	臭气度 5	无臭
甲醇臭	1,000	无臭
树脂臭 (烟)	臭气度 5	无臭
蒜臭	臭气度 5	无臭
病院臭	臭气度 4	无臭
烫发臭	臭气度 1	无臭
定物臭	臭气度 4	无臭
炯臭	臭气度 4	无臭
卫生间臭	臭气度 4	无臭
生垃圾臭	臭气度 4	无臭
水槽臭	臭气度 4	尤臭
环境复合臭	臭气度 4	光臭

成分表

Coriander 芫荽	71	芳樟醇、水芹烯、葵醛、龙脑、蒎烯
Chinese prickiy ash 花椒	油	异茴香糖
Pepper 胡椒	油	胡椒碱、胡辣椒酯碱
Anise 大茴香	油	人茴香脑、人茴香醛、芳樟醇
Rose 玫瑰	制	香茅醇、桂花醇、丁香油醇、苯乙醇
Mint 海荷	油、汁	薄荷脑、薄荷酮、乙酸薄荷酯、丙酸叶酯、α-蒎烯
Joshin 某莉	油, 汁	苯甲醇、芳樟醇、安息酸、乙酸叶酯、苯甲酸叶酯
Orange 橙桔	油	葵醛、辛醛、柠檬醛、芳樟醛、橙花醛
Pommel 柏子	油	柠檬醛、香叶醛、芳樟醛、橙花醛
Lemon 柠檬	油	柠檬醛、辛醛、王醛、十二醛、蒎烯、芳樟醛
Murray panicueata 九里香	针	水芹烯、蒎烯、松油醇
Laurel 月桂	油	核叶素、芳樟醇、松油醇、月桂烯
Narcissus 水仙	71:	丁香酚、苯甲醛、苯甲酸甲酯、苯莉酮、香叶醇
Wintergreen 冬青	油	水杨酸甲酯
Pine needle 松针	油	月桂烯、水芹菜、灰烯、葵酥醛、十二醛
Sandal wool 檀木	油	α-檀香醇、β-檀香烯、β-檀香醇、α-檀香烯

品质规格书

编号		项目	试验条件	检查值	试	俭方法
1		PH	25℃原液	7, 0±2, 0	JIS	K3362
2		PH	25℃ 1%水溶液	7,0±2,0	JIS	K3362
3		外观		无色或绿色		
4		比重	25°C/25°C	1.00037± 0.0003	JIS	K0061
5		引火点		測定不能	JIS	K2265
6		油分		0.2%	JIS	K3362
7	有	机酸(酸度)		0%	消	定法
8		群酸		0%	GI	C法
9	界市	面活性剂相当分	植物性	1.38%	JIS	K3362
10		游离碱		0.26%	JIS	K3304
11	20	(基 (CN) ppm		不检出	JIS	K0102
12		竹(Pb)		不检出		
130	- 18	砒素 (AS)	对于 AS2 03	不检出		
14	6	価铬 (Cr+6)		不检出		
15		級 (CD)		不检出		
16	.9.	水银 (T Hg)		不检出		
17	有	硝苯磷酸酯		不检出		
18	机碳	甲醛磷酸酯		不检出		
19	16%	EPN		不检出		
21		ADDERSON AND	老鼠经口	2.000ml/kg 以 上	1.0	50
22		急性毒性	老鼠腹腔内注 射	20ml/kg 以上	LI	50
23		保质期	除臭效果	2 年		

除臭除味剤品质符合以上数值规格。

附件 18: 化水污水管理制度

上杭红新能源科技有限公司 化水污水管理制度

- 在部门的直接领导下负责公司渗滤液处理的工艺质量,跟踪监测, 确保污水处理达标回用;
- 2、配合污水运行人员及时、准确、实事求是地作好各项检测分析工作;
- 3、整理、保管好原始分析数据并及时反映水质情况;
- 4、保管好化学药品,对有危险、剧毒的药品要按有关规定存放;
- 5、配制所需各种标准溶液,校正仪器,绘制标准曲线等;
- 6、做好化验室的仪器卫生及保养工作,确保安全使用;
- 7、严格遵守厂各项规章制度,确保化验室长年水质检测不脱人;

本工程渗沥液处理出水水质必须达到 GB/T 19923-2005 《城市污水再生利用工业用水水质》 标准中敞开式循环冷却水系统补充水标准后回用作循环冷却水系统补充水,循环用水必须每天化验,当化验数据超出该范围,需立即通知污水班长,打入垃圾库,不予回用。连续一周均无法达标时,处理能力超过渗滤液站处理能力时,需及时向公司领导汇报,及时联系罐车运往其他污水厂协调处理。

具体水质标准见下表

项目	敞开式循环冷却水系统补充水
pH值	6.5-8.5
悬浮物 (SS) (mg/L)	≤10
浊度 (NTU)	≤ 5
色度(度)	≤30
生化需氧量 (BOD5) (mg/L)	≤10
化学需氧量 (CODor) (mg/L)	≤50
铁 (mg/L)	≤0.3
锰 (mg/L)	≤0.1
氯离子(mg/L)	≤250
二氧化硅 (SiO ₂)	≤50
总硬度(以 CaCO。计/mg/L)	≤450

项目	敞开式循环冷却水系统补充水
总碱度(以 CaCO。计 mg/L)	≤350
硫酸盐 (mg/L)	≤250
氦氦(以N计 mg/L)	≤10
总磷(以P计 mg/L)	≤1.0
溶解性总固体 (mg/L)	≤1000
石油类(mg/L)	≤1.0
阴离子表面活性剂 (mg/L)	≤0.5
余氯② (mg/L	≥0.05
粪大肠菌群 (个/L)	≤2000
总大肠细菌群	-0-0-

附件 19: 性能测试报告

FJB/JK1126-2022

报告编号: GZ2023WGL00026

电站锅炉性能试验报告

FJB/JK1126-2022

委托单位: 上杭红新能源科技有限公司

锅炉型号: SLC300-4.0/400

锅炉编号: ______6124

试验日期: 2023-11-29

福建省锅炉压力容器检验研究院

地址(Add.):福建省福州市仓山区京苏路 390

电话(Tel.): 0591-968829

网址 (Wetsite): www.fjtj.com

(Fax) = 0591-88700509

邮政编码: 350008

电子信箱(E-mail): fjtj@fjtj.org

注意事项

- 一、报告书应当由计算机打印输出,或用钢笔、签字笔填写,字迹要工整,徐改无效。
- 二、本报告书无编制、审核、批准人员签字无效。
- 三、本报告书无测试机构的测试专用章无效。
- 四、内容缺少、摘录或部分复印无效。
- 五、本报告书一式两份、由测试机构和委托单位分别保存。
- 六、本报告测试结论是在本报告所记载和描述的测试依据和测试条件下得出的。
- 七、委托单位对本报告结论如有异议,请在收到报告之日起15日内,向测试机构提出书面意见。
- 八、报检联系电话: 968829, 网上报检网址: http://27.151.117.65:9999/sdn/login/login.jsp.

电站锅炉性能试验报告目录

序号	項目	页码
1	电站锅炉性能试验综合报告	1
2	模述	2
3	试验依据	5
4	武骑目的	5
5	试验项目	5
6	试验内容及测量项目与方法	5
7	试验安排	12
8	试验计算原理	15
9	试验结果及分析	15
10	结论与建议	19
11	附及	20

1 电站锅炉性能试验综合报告

报告编号: GZ2023WGL00026

		採月組	♥: GZ2023WGL00026
委托单位	上杭红新能源科技有限公司	委托单位地址	龙岩市上杭县临城镇土埔村 烂泥坑
用产单位(电厂)	上杭红新能源科技有限公司	用户单位(电厂) 地址	龙岩市上杭县临城镇土埔村 烂泥坑
制造单位	江联重工集团股份有限公 可	锅炉型号	SLC300-4, 0/400
锅炉产品编号	6124	联系人/电话	纪伟/18022708316
负责试验单位	福建省锅炉压力容器检验研 究院	燃料化验单位	福建省锅炉压力容器检验研 究院
	1-2015《电站锅炉性能试验规程 21《锅炉节能环保技术规程》;	87.13	
试验结果	本次试验测得红联重工集 级焚烧余熟锅炉在测试运行 80.96%,平均过量空气系数为	工况下,燃烧生活均	
试验结论	该垃圾焚烧余热锅炉燃烧 的要求《设计热效率为 81.05%		试热效率符合设计热效率 95%
试验人员,叶承勇。	,王志建、陈俊延		
试验负责人: 12十	通第 2023.1	2.12	压力容器的
报告编制: 1/2	译名 2023.1	2.12	(和國際創業開業)
报告审核: 水路	2023.12.	14	设制表 用南 V n
报告批准: 34	75- 2023.12	.14	01040147201

第1页 共30页

2 概述

2.1 试验概述

上杭红新能源科技有限公司一台垃圾焚烧余热锅炉(锅炉型号为 SLC300-4.0/400, 由厂编号为: 6124, 厂内编号为: 1#)由江联重工集团股份有限公司设计制造, 2021 年 11 月制造, 为贯彻《中华人民共和国特种设备安全法》和《特种设备安全监察条例》, 执行TSG 91-2021《锅炉节能环保技术规程》和《高耗能特种设备节能监督管理办法》的规定, 考核锅炉运行热效率, 受上杭红新能源科技有限公司的委托, 福建省锅炉压力容器检验研究院对 1#垃圾焚烧余热锅炉进行热效率性能试验。锅炉热效率性能试验准备工作于 2023 年 11 月 28 日开始, 正式热效率性能试验于 2023 年 11 月 29 日上午 9 点 50 分开始, 下午 16 点 10 分完成试验工作。

试验期间该锅炉运行稳定,两个工况锅炉蒸发量为 20.3t/h 和 20.4t/h,过热蒸汽温度为 396.7 $^{\circ}$ C和 397.6 $^{\circ}$ C,过热蒸汽压力为 3.76MPa 和 3.76MPa,锅炉排烟处过量空气系数为 1.46 和 1.60,排烟温度为 190.4 $^{\circ}$ C和 183.9 $^{\circ}$ C。

2.2 设备概述

江联重工集团股份有限公司制造的 SLC300-4.0/400 型垃圾焚烧余热锅炉,为单锅筒、 自然循环水管锅炉,立式结构、顶部悬吊、室内布置,框架采用钢结构。

该余热锅炉设计有四个垂直烟道,第一和第二烟道为没有对流受热面的膜式壁;第三烟道为膜式壁,内部布置有蒸发管束、高温过热器和低温过热器,在过热器之间布置了两级喷水减温器,用来调节过热器出口汽温;第四烟道为护板结构,内部布置有省煤器管束。

余锅炉由锅筒(含内部装置)、水管系统、上升管系统、下降管系统、蒸发管束、过热 器系统(含减温器系统)、省煤器系统、一、二级蒸汽-空气预热器系统、吊挂系统、汽水 管路系统、给水系统、钢结构(喷砂、喷漆、防腐)、平台扶锑(镀锌栅格、喷砂、防腐)、 刚性梁、膨胀系统、密封系统、门类杂件、热工仪表等组成。

整台余热锅炉采用轻型炉墙结构,内部有耐高温、抗磨、抗腐材料,外部有保温、防腐材料、炉墙外还包覆彩色的外护板。

垃圾处理量: 300 t/d;

额定主蒸汽量 (保证值): 26 t/h:

额定蒸汽出口压力: 4.0 MPa:

额定蒸汽出口温度:400℃:

给水温度: 130 ℃;

第 2 页 共 30 页

锅炉热效率: >81 %(MCR);

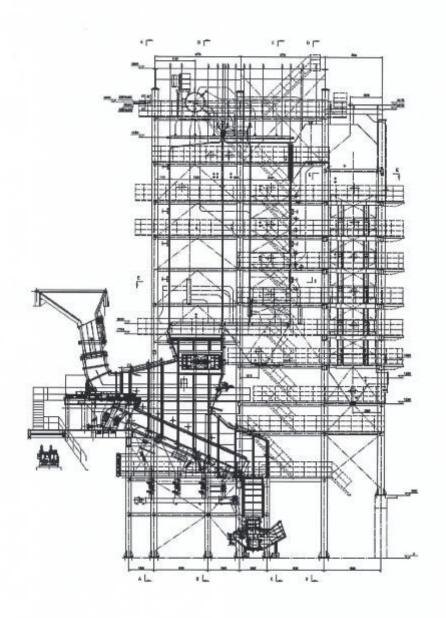
排污率: 1%;

热灼减率: <3%(由炉排供应商保证);

炉膛过量空气系数: 1.8:

省煤器出口排烟温度: 190℃;

锅炉负荷调节范围: 60~115%;


一次风经蒸汽-空气预热器出口温度:230℃。

2.2.2 设计燃料特性

- (1) 设计燃料种类; 生活垃圾
- (2) 燃料分析: C_{ir}: 17.3%; H_{ir}: 3.1%; O_{ir}: 10.7%; N_{ir}: 1.1%; S_{ir}: 0.03%; A_{ir}: 20.5%; W_{ir}: 47.27%;
- (3) 垃圾低位发热量: 6700kJ/kg(1600kca1/kg)。

第 3 页 共 30 页

2.2.3 锅炉总图

第 4 页 共 30 页

3 试验依据

GB/T 10184-2015《电站锅炉性能试验规程》;

TSG 91-2021《锅炉节能环保技术规程》;

《中华人民共和国特种设备安全法》;

《高耗能特种设备节能监督管理办法》;

《锅炉厂提供的产品说明书和热力计算书等技术资料》:

《特种设备安全监察条例》。

4 试验目的

根据 TSG 91-2021《锅炉节能环保技术规程》,为了加强锅炉节能监督工作,促进锅炉安全性与经济性的统一,做好两年一次的在用锅炉定期能效测试工作,特进行此次电站锅炉热效率性能试验。

接机组实际运行状况及燃用日常燃料条件下考核测试锅炉的运行热效率,换清锅炉各项热损失的情况,评价该锅炉在实际运行参数下的能效状况。

5 试验项目

本试验主要针对 1#锅炉进行热效率性能试验,在锅炉日常运行负荷下进行。本次锅炉 热效率试验采用反平衡法,即热损失法测定热效率。共进行两次试验,取两次热效率的平 均值作为试验结果。

6 试验内容及测量项目与方法

6.1 试验内容

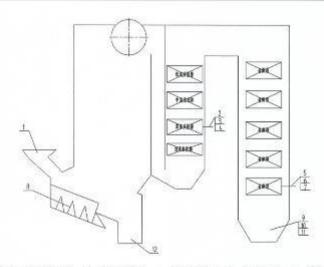
于 2023 年 11 月 29 日上午 9 点 50 分至下午 16 点 10 分, 对 1#余热锅炉进行热效率性能试验。

6.2 测量项目及测点布置图

根据要求,本次效率试验采用反平衡法进行测试和分析计算。每个试验过程的所有取 样和分析应在机组运行稳定后进行,每个试验工况持续时间 2h,测试 2 个工况,测试有效 时间 4h。试验期间锅炉机组负荷应不低于额定负荷的 70%。

6.2.1 基本测量项目

- (1) 燃料取样分析,包括燃料全水分、工业分析、元素分析和燃料的发热量。
- (2) 炉渣、飞灰取样分析可燃物含量
- (3) 排烟烟气成分分析
- (4) 排烟温度


第 5 页 共 30 页

- (5) 大气压力和环境温度、湿度
- (6) 锅炉外表面保温层温度
- (7) 锅炉炉体附近风速

试验主要测量项目如表1所示,各项测试的主要位置如图1所示。

表1 试验主要测量项目

序号	测量项目	测量位置	測点数量	测量间隔	备注
1	燃料取样	燃料入口	1	30分钟	燃料量、燃料工业分析。 元素分析、发热量
2	力特別及举	冷渣器出渣口	1	30分钟	
3	飞灰取样	省煤器出口烟道 裁面上	2	30分钟	_
4	排烟烟气CO ₂ 、O ₂ 、 CO分析	省煤器出口烟道 截面上	2	15分钟	代表点法
5	排烟烟气温度	省煤器出口烟道 截面上	4	5分钟	代表点法
6	大气压力和环境 温度、湿度	送风机入口附近	1	15分钟	_
7	炉体外表面温度	锅炉外表面	8	15分钟	2 20
8	风速	炉体附近	1	15分钟	

1、燃料取样 2、主蒸汽温度 3、主蒸汽压力 4、主蒸汽流量 5、给水流量 6、给水温度 7、给 水压力 8、入炉冷空气温度 9、排烟温度 10、排烟处烟气分析 11、飞灰取样 12、炉渣取样

第6页共30页

6.2.2 参考测量项目

参考项目是作为运行工况的依据,可以分析影响锅炉效率的因素,试验中要测定的参 考项目如下:

- (1) 主蒸汽流量、压力、温度;
- (2) 给水流量、压力、温度;
- (3) 炉渣量、飞灰量;
- (4) 炉膛出口烟气温度;
- (5) 低温过热器出口烟气温度:
- (6) 省煤器出口烟气含氧量等。

6.3 测量方法

基本測量项目需要试验人员负责进行记录;参考测量项目可以在 DCS 上获得,对所有项目数据每隔 15 分钟记录一次,并计算平均值。

6.3.1 入炉燃料的采样

入炉燃料的采样由锅炉使用单位配合,入炉燃料采样点根据尽量接近锅炉燃烧室的原则,燃料取样点为垃圾发酵池。本次试验期间锅炉使用燃料为生活垃圾,燃料取样后按照样品四分法处理(见图 2),混合后均匀后送工业分析、元素分析、发热量。试验期间每台炉每个工况做一个工业分析、元素分析、发热量。由试验方负责。

图 2 样品四分法

本次试验期间锅炉使用燃料为生活垃圾,燃料取样试验开始前 1h 开始对入炉燃料进 行取样,以保证样品能代表试验期间所用燃料。

采集的样品立即密封保存,缩分样品应尽快进行。

6.3.2 炉渣取样及计量

试验开始后 30 分钟进行取样炉渣,每个工况取样 4 次,试验结束进行现场缩分,作 为炉底大渣代表样品。

證样的缩制程序同燃料取样完全一样。经实验室脱水干燥后制样,由试验方进行化验, 化验内容为炉渣中可燃物含量。

第7页共30页

炉渣计量: 锅炉使用单位统计计算数据。

6.3.3 飞灰取样及计量

试验开始30分钟后采用经标定的代表点用自动烟尘(气)测试仪进行等速采样飞灰,每个工况取样4次。飞灰取样由试验方进行化验,化验内容为飞灰中可燃物含量。

飞灰计量:锅炉使用单位统计计算数据。

6.3.4 排润温度测量

根据 GB/T 10184-2015 5.3.3 的要求、测量排烟温度,在最后一级受热面后出口烟道上,以代表点法,每5分钟采集温度数据一次。

根据该锅炉烟道实际开孔情况,取烟道上2个测孔,每测孔设置2个测点,共4根热 电偶配无线温度采集系统,采集排烟温度。烟气温度测量系统原理见图3所示,烟气温度 衡量现场见图4所示。

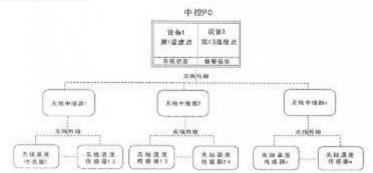


图 3 烟气温度测量系统原理

图 4 烟气温度测量现场

第 8 页 共 30 页

6.3.5 烟气成分测量

烟气成分分析取样点与烟气温度测量点布置相同的位置,用代表点法在省煤器由口烟 道截面布置 2 个取样点(与排烟温度测量同测孔)取样,经检定合格的烟气分析仪进行分析,每 15min 抽取烟气分析 1 组数据,采用多点代表法用橡胶管将每个取样管从烟道抽取的烟气样品用硅胶管引至外接优质过滤器实施清洁、除湿处理,最后将预处理后的烟气接入烟气分析仪分析烟气中 O2、CO、CO2、SO2 等。烟气采样系统原理见图 5 所示,烟气成分测量现场见图 6 所示。

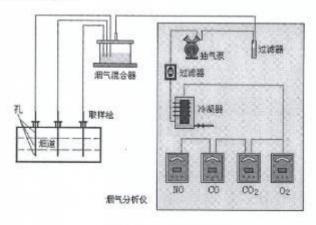


图 5 烟气采样系统原理

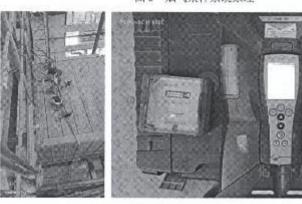


图 6 烟气成分测量现场

6.3.6 锅炉本体表面温度

根据 GB/T10184-2015 7.4.4 的要求,采用锅炉设计的散热损失值或者按附录 I 查表计

第 9 页 共 30 页

算得出锅炉的散热损失。为了考察计算锅炉表面保温层的保温状况,使用红外测温仪进行 炉体外表面温度测量并现场记录。

6.3.7 温、湿度及大气压力测量

用热电偶温度计和数字温湿度大气压表在送风机入风口附近测量测量空气湿度、大气压力和空气温度,每15分钟测量1次。

6.3.8 现场风速测量

用风速仪在炉体附近测量现场风速,每15分钟测量1次。

6.3.9 主要运行参数

试验期间, DCS 中所有主、辅机的运行参数每 15 分钟记录一次。同时计算下参数每 小时和整个试验期间的平均值。

- (1) 主蒸汽流量、压力、温度
- (2) 给水流量、压力、温度
- (3) 炉膛出口烟气温度
- (4) 低温过热器出口烟气温度
- (5) 省煤器出口烟气含氧量等。

6.4 仪表和仪器的校核

根据测量项目及测量方法,确定试验所需的测量仪表并进行状态校验校核,主要包括 使用单位安装的现场仪表和试验方的专用试验测量仪表。

6.4.1 现场仪表校验

许多运行参数由使用单位现有的仪表和仪器测试并记录,因而使用单位方面需对这些 仪表和仪器(包括压力、流量、氧量等测量仪表)进行校核以确保测量数据的准确可靠。

下列表计及一次元件应经过校验确认、校验工作由使用单位在试验之前完成。

- (1) 过热蒸汽流量测量的差压变送器
- (2) 过热蒸汽温度测量的一、二次元件
- (3) 过热蒸汽压力测量的压力变送器
- (4) 给水流量测量的差压变送器
- (5) 给水温度测量的一、二次元件
- (6) 给水压力测量的压力变送器
- (7) 炉膛出口烟气温度测量的一、二次元件
- (8) 低温过热器烟气温度测量的一、二次元件

第10页共30页

(9) 省煤器出口烟气含氧量分析装置

6.4.2 注意事项

- 1.烟气取样分析时应防止空气或烟气从分析装置和取样管路漏入或漏出, 所采用的取 样管路应由不会产生污染的材料制成。
- 2.飞灰取样时,在整个系列试验期间,应连续取样,将取样枪捅进烟道后,应立即开始取样,停止取样时应立即抽出取样枪;当取样枪逐点移动以取得平均值时,各点在烟气中停留的时间应相同;必须仔细收集吸入取样枪的全部飞灰,盛飞灰试样的密封袋应确保足够干燥和其所能承受的温度。
- 3.从高温烟气侧取样时,应确保高温烟气不伤害到试验人员及仪器设备:在转动机械 上取样应注意观察转动机械工作特性、做好防护措施,保证取样安全,同时取样时不能影响转动机械工作,取样时应通知锅炉使用单位运行人员和锅炉使用单位现场试验工作负责人。
- 4.现场临时取样装置、测量仪表的安装由锅炉使用单位负责,在开始工作前应通知锅炉使用单位,安装时应有锅炉使用单位人员在场监护,确保试验安装工作不影响机组正常运行。
- 5.所有用来连接用的胶管在投入使用前必须用空气吹扫并检查有无泄漏,严禁用水冲 流。
- 6.入炉燃料、飞灰、炉渣等试样必须严格按国家标准缩分,并各留样两份(试验单位和锅炉使用单位各取一份)。

6.4.3 试验仪器校验

本试验主要仪表仪器采用进口和国内先进测试装置,由试验方对提供的各种仪器进行 校核,以确保测量的准确性。主要专用仪表仪器如下:

- 1、烟气分析仪: 德国德图 testo350;
- 2、烟气温度测量装置:一次元件采用I级K型铠装热电偶,装配无线采集系统一同使用;
- 3、红外测温仪: 德国欧普士 MS+-IS:
- 4、其它设备:如数字温湿度大气压力表、风速仪、testo925 温度计,均经过校验并处于有效期;飞灰取样仪器为青岛崂应的自动烟尘气测试仪。

第 11 页 共 30 页

主要试验仪器仪表说明

序号	测试项目	測试仪器	型号	精度	量程	设备编号
1	排烟处烟气 分析	烟气分析仪	testo350 VARIO PLUS	RO ₂ 、 O ₈ : 1. 0 級 CO: 5. 0 級	C0:0-10000ppm 0 ₂ :0-25% S02:0-500ppm	GGA0014 GGA0135
2	排烟烟气温 度	无线温度采集 系统(铠装热 电偶)	ECWL=1010A/ R/40A/R	0.5級	0-600°C	JNA0120 (JJ12-11 01-1104)
3	空气温度	热电偶温度计	Testo925	0.5 級	0-400°C	JNA0020
:4:	大气压力	数字温湿度大 气压力表	TRM-GPS3	0, 01kPa	30. 0-110kPa	JNA0134
5	空气湿度	数字温湿度大 气压力表	TRM-GPS3	±3%RH	0-100% RH	JNA0134
6	风速	风速仪	testo 435-4	0.01 m/s	5-30n/s	GGA0200
7	飞灰采样	自动炬尘气测试仪	3012H	±2.5%FS	(10~60)L/min	GGA0116
8	炉塩表面温 度	红外测温仪	MS+-IS	±1℃	0~530℃	GGA0204

7 试验安排

7.1 试验安排

7.1.1 试验装置安装

预备试验开始前一天,安排安装试验所用的临时试验装置以及有关试验仪表接线工作,对必须进行标定的仪表(如燃料称量单元)及试验仪器进行标定和确认,核实试验应 具备的条件等工作。

7.1.2 预备性试验

正式试验前,在机组带负荷的锅炉蒸发量运行工况下按正式试验的测试项目和要求进行一次预备性试验,以检验各试验装置和仪器、试验测试手段以及熟悉试验步骤和过程, 检验试验系统与非试验系统的隔离情况,对可能存在的问题进行纠正或做出预防措施,确 定合适的燃烧工况。

预备试验的结果可以作为正式试验的参考,在经试验各方认可且对试验结果无异议的 情况下可以将试验数据及计算分析结果作为正式试验的一部分。

7.1.3 正式试验

根据要求在机组带负荷时对应的锅炉蒸发量下进行热效率试验。

预备性试验结束后,对预备性试验的结果进行分析,以确保正式试验的顺利进行。正 式试验持续时间约4个小时(两个工况)。试验所燃用的燃料应严格按照要求供给。

正式试验开始前,试验人员应会同锅炉使用单位有关人员对即将进行的试验工况条件

第 12 页 共 30 页

进行确认,对可能存在或出现的问题进行分析和商定。

正式试验时,每个测量点或测量数据的读取原则上应有同一个人完成。正式试验过程中,若机组运行工况无法满足试验要求,应终止试验,待运行工况恢复后再进行。

正式试验进行两次,若两次试验结果超过预先商定的平行试验之间的允许偏差,则需 要做重复性试验,直到有两次试验的结果落在允许偏差范围内,其实验结果为该两次试验 的平均值。

7.2 试验条件及要求

- (1) 试验过程所燃用的燃料必须符合试验要求且在标准允许变化范围内,要求在开 始进行本试验前 3 天准备足够试验燃料。
- (2)试验前应检查确认锅炉各主要设备要求;过热器出口主汽温度、一次风温、二次风温、燃烧器挡板开度等;燃料称重单元应确保准确可靠。
- (3)试验前应确保运行设备均工作正常,没有影响锅炉出力和运行参数的缺陷,必 须消除烟、风系统不应有的泄漏,消除汽、水、燃料的泄漏,确定试验机组与其他非试验 系统已隔离。
- (4)锅炉经过燃烧调整,锅炉使用单位运行人员应调整锅炉运行工况满足机组经济、安全运行要求,过量空气系数保持设计值。
 - (5) 给水温度、过热蒸汽温度、锅炉出力等运行参数达到试验要求范围。
- (6)试验工况从开始直至结束,锅炉燃烧工况、燃料量、主蒸汽流量及温度、给水流量及温度、过量空气系数、配风情况、风门、挡板开度以及试验所需控制温度和压力等参数应保持稳定,试验期间不允许进行可能干扰试验工况的任何操作,如吹灰、定期排污等工作。
 - (7) 每个试验过程中,锅炉主要参数波动不得超过下表所示的允许偏差。

锅炉主要参数的允许偏差

測量項目	观测值的允许偏差
蒸发量 (给水流量)	±5%
蒸汽压力	±4%(且不超过最高允许工作压力)
蒸汽温度	-10℃~+5 ℃

(8) 临时安装的测点及取样装置已制作安装完毕,各取样装置及取样点符合现场使用要求,确认各试验仪器、临时安装的测点完好,现场所需电源、气源、照明等已满足仪器使用要求。

第 13 页 共 30 页

(9)锅炉机组带 30%以上的额定负荷必须连续正常运行 3 天以上。在试验前 9 小时机组运行负荷应不低于试验负荷的 70%;试验前 4h 开始燃用试验燃料并将锅炉机组调整到试验工况要求的出力且调节好相应的运行参数,每个工况试验前应完成锅炉各受热面的全面吹灰,以确保各受热面清洁。在试验前 1h 应稳定在预定的试验工况,各种参数符合试验要求。

7.3 试验分工

- (1)试验方负责试验大纲的编写、报批;负责提供试验所必须的仪器仪表;负责对试验测点的安装提供技术指导,对试验测点进行检查,以确认满足试验的要求;负责在性能试验前对有关人员进行技术交底,试验进行的过程中承担指挥职责,并对运行人员的操作进行必要的指导;负责试验工作的具体实施,并按业主的要求按时完成性能试验工作;负责按业主的要求按时提交性能试验报告。
- (2)锅炉使用单位负责相关的调度联系以及运行工况的调整,负责提供材料、并按试验的要求完成现场测点的制作与加工;负责根据试验承担单位的要求提供或借阅有关的工程图纸、资料。
- (3)锅炉使用单位、试验方均指定专门负责人员,以便对现场测试的条件及测试数据进行签字确认。
- (4)试验期间,锅炉使用单位运行人员配合进行工况调整及各种运行设备的操作, 负责提供水源、气源及电源相关的各种数据。
- (5) 试验方实验室负责进行入炉燃料的工业分析、发热量分析以及燃料样元素分析、 灰渣相关分析。

具体人员分工如下:

序号	测量项目	岗位位置	測点数量	赛量间 隔	岗位负责 人	设备仪器	备注
1	锅炉运行 参数记录	中控室系统前	1	15分钟	叶承勇	DCS	=
2	燃料料	入炉给煤机前	1	30分钟	王志建	取样袋、标签	88 0
3	炉油取样	冷渣器出渣口	1.	30分钟	王志建	取样袋、标签	8)
4	飞灰汽车	省煤器出口炬道	1	30分钟	陈俊延	自动烟尘气测试 仪、取样袋、标签	8.3
5	排烟烟气 成分分析	省煤器出口烟道	2	15分钟	陈俊延	烟气分析仪、采样 枪、胶管等	8 1
6	排烟烟气 温度	省煤器出口烟道	40	5分钟	叶承勇	热电偶温度计、无 线数据采集系统	-

第 14 页 共 30 页

7	大气压力 和空气温 度、湿度	送风机入口附近	1	15分钟	王志建	温度计、数字温湿 度大气压表	-
8	炉体外表 面温度	炉体外表面	8	15分钟	王志建	紅外測溫仪	-
9	凤遮	炉体附近	ŧ	15分钟	王志建	风速仪	_

8 试验计算原理

8.1 锅炉热效率的计算

锅炉热效率采用 GB/T 10184-2015 标准进行计算。计算中灰、渣比例为现锅炉统计数 据确认。燃料元素分析根据试验方实验室分析结果得出。

锅炉烧效率的计算计算公式为:

 $\eta = 100 - (q_2 + q_3 + q_4 + q_5 + q_6 + q_{oth} - q_{ex})$

式中: q2: 排烟热损失百分率, %;

q3: 可燃气体未完全燃烧热损失百分率,%;

q4: 固体未完全燃烧热损失百分率,%;

qs: 锅炉散热损失百分率, %;

q6: 灰渣物理热损失百分率, %:

q_{sh}: 其他热损失,包括石子煤排放热损失等,%:

qex: 外来热量与燃料低位发热量的百分比,%。

9 试验结果及分析

正式试验期间,在两个试验工况负荷下,对入炉垃圾、炉渣、飞灰、进行了取样,对 排烟温度、排烟氧量等进行了测量,取样及测量的分析结果如下。

9.1 燃料分析结果

锅炉试验期间使用的燃料为生活垃圾,与设计燃料相符(设计燃料为生活垃圾),每 个测试工况由锅炉使用单位和试验方在进料口前取样,再由试验方专人接收并按试验方案 要求缩分保存并进行化验分析,其化验数据见表 2:

表 2 锅炉试验燃料特性

序号	化验项目名称	符号	单位	试验工况I	试验工况II
1	收到基碳	Cur	*	21.03	20.74
2	收到基氢	Her	¥	2.60	2.46

第 15 页 共 30 页

3	收到基氧	Our	%	11, 01	11.33
4	收到基礎	Sur	%	0.09	0.08
5	收到基氮	Ner	*6	0.76	0. 64
6	收到基灰分	Au	*	16, 71	17.44
7	收到基水分	Ж	*	47.8	47, 3
8	收到基低位发热量	Questin	kJ/kg	7210	6980
_					1

从试验燃料分析结果可知。试验期间入炉燃料元素分析、工业分析和发热量稳定。

9.2 排烟温度

根据 GB/T10184-2015 中 5.3.3 的要求, 測量排烟温度, 在锅炉末级换热面后出口烟道上,以代表点测试法或网络法, 根据 GB/T10184-2015 中 4.8 的要求,每 5 分钟采集温度数据一次。锅炉最后一级换热器为省煤器, 尾部单烟道布置。省煤器后烟气温度测试采用基于代表点测试法原理的测试方法;

- (1) 测试期间开烟道 2 个测孔,每个测孔设置 2 个测点测量温度;
- (2) 采用无线温度采集系统每 5 分钟同步测量每个测点温度,客观反映各工况下的 排烟温度情况。

试验期间,省煤器后烟气温度测量结果如表3所示。

表3省煤器后排烟温度测量结果

试验工况		试验工况I	试验工况Ⅱ
省煤器后排烟温度(℃) (实測值)	平均值	190. 4	183.6

该锅炉两个测试工况, 省煤器出口实测排烟温度分别为 190.4℃和 183.6℃, 平均排烟温度为 187.2℃, 与设计值相差不大(设计排烟温度 190℃)。

9.3 排烟烟气成分测量

本次试验每个工况测量省煤器出口的烟气成分。在省煤器出口烟道截面抽取烟气,烟气样混合后经过烟气前处理装置进行除水、除灰处理,随后进入烟气分析仪分析其中的烟气各组分浓度。测试点根据 GB/T10184-2015 中 5.10.1 的要求,锅炉为单烟道布置,省煤器出口烟道布置 2 个测点。本次排烟烟气成分测试采用基于代表点原理的测试方法:

- (1) 取省煤器出口烟道截面上2个测点测量烟气成分;
- (2)混合2个测点的采样烟气,经烟气分析仪进行分析,每15分钟进行一次采样监测,客观反映各工况下的排烟烟气成分。

第 16 页 共 30 页

试验期间,排烟氧量测量结果如表4所示:

表 4 锅炉排烟成分分析结果

试验工况		试验工况I	试验工况Ⅱ	
VC-24-10-10-10-10-10-10-10-10-10-10-10-10-10-	0-(平均)	6.77	8, 00	
省煤器后排烟成分(%) (实測值)	C0₂(平均)	12, 76	11. 41	
	CO(平均)	0, 0025	0.0004	
省煤器后氧量(%)	02(左/右)	3. 9/6. 0	4, 8/7, 9	
(DCS)	0,(平均)	4. 95	6, 35	

该锅炉在两个测试工况,省煤器出口排烟氧量实测平均值与DCS 上平均值相差较大, 且DCS 上左右两侧平均值也相差较大,考虑省煤器出口DCS 在线氧量分析仪器存在偏差, 建议使用单位检查在线氧量分析仪器的使用情况,并对氧量分析仪器进行标定。

9.4 锅炉本体表面温度

根据 GB/T10184-2015 附录 I 的要求,查表后计算得出锅炉表面散热损失。为了考察锅炉表面保温层的保温状况,使用红外测温仪进行外表面温度测量。测量结果如表 5 所示。

表 5 炉体表面温度测量结果

试验工资		试验工况I	试验工况II
	1	33. 8	32.8
	2	40, 2	41.1
	3	49. 0	41.9
	4	44. 3	47. 4
炉体表面温度	5	38, 6	56.6
	6	32. 5	41.6
	7	61.0	43, 3
	8	44. 7	39. 8
	平均值	43. 0	43. 1

由测试结果可知,该锅炉两个测试工况,炉体外表面温度平均值为43.0℃和43.1℃,环境温度平均值为20.5℃和23.8℃;炉体外表面温度与环境温度之差小于25℃,符合TS691-20212.4.3条的要求,炉体总体保温效果良好。

第 17 页 共 30 页

9.5 其他测量结果

试验期间,大气压力、空气温湿度等测量数据如表6所示;

表 6 锅炉试验期间大气压力、空气温湿度测量结果

试验工况	试验工况 [试验工况Ⅱ	
大气压力 (Pa)	99620	99340	
空气温度	20. 5	23. 8	
空气相对湿度	61.3	53. 0	

9.6 锅炉热效率主要计算结果

热效率计算中,利用 DCS 原有表计读数的参数有:给水温度、给水压力、给水流量、主蒸汽温度、主蒸汽压力和主蒸汽流量等。热效率计算中灰渣比率为:飞灰:10%。炉渣:90%。锅炉热效率主要计算结果见表7。

表 7 锅炉热效率主要计算结果

试验工况	试验工况I	试验工况Ⅱ
排烟热损失百分比(%)	12. 10	12.30
可燃气体未完全燃烧损失百分比(%)	0.01	0.00
固体未完全燃烧损失百分比(%)	4.14	4. 82
锅炉散热损失百分比(%)	0, 75	0, 75
灰渣物理热损失百分比(%)	1, 36	1. 47
外来热量与燃料低位发热量的百分比 (%)	-0. 28	-0. 08
锅炉热效率(%)	81, 35	80. 58

该锅炉在两个工况试验负荷下的测试热效率分别为;81.35%和80.58%,平均热效率 为80.96%,锅炉测试热效率 其设计热效率95%的要求(设计热效率81.05%)。

第 18 页 共 30 页

10 结论与建议

本次试验对该锅炉在两个工况负荷下进行了锅炉热效率测试。对试验结果进行总结分 析,得出如下结论与建议:

1、省煤器出口排烟氧量

该锅炉在两个测试工况,省煤器出口排烟氧量实测平均值与DCS上平均值相差较大, 且DCS上左右侧平均值也相差较大,考虑省煤器出口DCS在线氧量分析仪器存在偏差,建 议使用单位检查在线氧量分析仪器的使用情况,并对氧量分析仪器进行标定。

2、锅炉热效率

该锅炉在两个工况试验负荷下的测试热效率分别为: 81.35%和 80.58%, 平均热效率为 80.96%, 锅炉测试热效率高于其设计热效率 95%的要求(设计热效率 81.05%)。

第 19 页 共 30 页

11 附录

11.1 附录 1 热效率计算结果

		項目名称				试验	数值
		试验工况序号	符号	单位	设计值	工况一	工况二
		试验日期				2023, 11, 29	2023, 11, 29
		人炉燃料(收到基)中 元素碳的质量分数	MC.er	%	17.3	21. 03	20.74
Ą	回	入炉燃料(收到基)中 元素氢的质量分数	H _{H.ar}	96	3. 1	2.60	2.46
	体液	人炉燃料(收到基)中 元素氧的质量分数	^w O.ar	76	10, 7	11. 01	11. 33
	体燃	人炉燃料(收到基)中 元素硫的质量分數	w _{S.ar}	%	0.03	0.09	0. 08
	鮮成	人炉燃料(收到基)中 元素氮的质量分数	16N.ar	%	1.1	0.76	0.64
	分和	人炉燃料(收到基)中 灰分的质量分数	W _{ES-OF}	56	20, 5	16, 71	17. 44
	发热	人炉燃料(收到基)中 水分的质量分数	"their	%	47.27	47.8	47. 3
	量	人炉煤(干燥无灰基) 中挥发分的质量分数	w _{V,daf}	%		WS 102	===
æ		收到基低位发热量	Q _{netur}	kj/kg	6700	7210	6980
M.		气体燃料中 CH ₄ 的体 积分数	ϕ_{CR4g}	%	_	1 1 1 1	-
4 中		气体燃料中 C ₂ H ₆ 的体 积分数	1 _{C2H4g}	%	_	200	_
共和		气体燃料中 C;H ₈ 的体 积分数	ACTAINS.	%	_		
脱鹿		气体燃料中 C ₄ H ₁₀ 的 体积分数	econog	%			
19	气体	气体燃料中 C ₅ H ₁₂ 的 体积分数	FCNH124	%		===	-
	燃料	气体燃料中 H ₂ 的体积 分数	$\sigma_{HZ,g}$	%	-8	_	-
	成分	气体燃料中 O ₂ 的体积 分数	*OLZ	%	_	-	_
	和发	气体燃料中 N ₂ 的体积 分数	θ_{N2_R}	96	_		2-3
	热量	气体燃料中 CO 的体 积分数	₹co _d	%			——————————————————————————————————————
		气体燃料中 CO ₂ 的体 积分数	*cong	14	13.000	1	-
	-	气体燃料中 H ₃ S 的体 积分数	$\theta_{H2S,g}$	56	-	<u> </u>	Ns 33
		气体燃料中不饱和烃 的体积分数	PECANIA	%	***		5-3
		气体燃料低位发热量	$Q_{AH,g}$	kj/m²		9 	3-3

第 20 页 共 30 页

FJB/JK1126-2022

		项目名称				试验数值	
	试验工况序号 试验日期 整 变形温度		符号	单位	设计值	工况一	工况二
						2023. 11. 29	2023. 11. 29
	260.	变形温度	D7	'n	-		-
	料	软化温度	57	rc			12—31
	灰分	半球温度	HT	С	-	8-	35-33
1	的熔	流动温度	FT	rc	_		12_11
	魁特	燃料特性系数	β	-	_	-	
	性	燃料的哈氏可磨度	HOL	100			-
.50	胀	膜硫剂中水分质量分 数	W _{Musies}	96	==8		e - 8
	破剤	脱硫剂中碳酸钙的质 量分数	*CaCO _S dus	%	-) 	-
	特性	碳酸钙分解效率	FEREIP 3 dea	%	-		
	III.	钙硫摩尔比	Cas	550	<u> </u>	-	- 22 -22
	锅炉蒸发量		D	kg/h	26000	20300	20400
ĵ	主蒸汽温度		1	C	400	396.7	397. 6
	主蒸汽压力		P	M/s	4. 0	3. 76	3, 76
	给水流量		O _{m ffw ECO en}	kg/h	5000		
	给水温度		fw.m	rc	130	103.3	101.1
	给水压力		p_{en}	M/sr	50.00	5. 16	5, 17
水	过热器减温水质量流量		0 _{m.sp.4SH}	kg/h	2.2		
和燕	再热器減温水质量流量		^Q m.sp.dRH	kg/h	-		
汽	再	热器进口蒸汽质量流量	σ _{m st.RH.en}	kg/h	577		155-16
	再	热器出口蒸汽质量流量	q _{m.st.RH.lv}	kg/h	5/25	7 <u>570.</u>	2550
	过	热器出口蒸汽质量流量	q _{m.st.SH} iv	kg/h		P941—12	-
	锅筒蒸汽压力		P	MPo		-	
	排污水质质量流量		$q_{\rm m.bd}$	kg/h	e9X(0)6	S==0	
	冷	造器冷却水质量流量	g _{m ew.SC}	kg/h			1
		省煤器进口水温	t' _w	C	130	103. 3	101. 1
		省煤器出口水温	r _p ,	С	=====	1575/	8-08
Ξ	排	于烟气中二氧化碳体 积分数	oco, gra	%	ava.	12, 76	11. 41

第 21 页 共 30 页

	项目名称 试验工况序号					试验	数值
			符号	单位	设计值	一界二	工况二
试验日期 個 烟 干烟气中氧气体积分					2023. 11. 29	2023, 11, 29	
烟气	烟	数	$^{9}O_{1}$ fig.d	%		6.77	8, 00
	气分	干烟气中一氧化碳体 积分数	Sco.fed	96	== 0	0.0025	0.0004
	析	干烟气中氢气体积分 数	PCO ft d	%		-	<u> </u>
		干烟气中 CH4 体积分 数	$\phi_{CH_i,fg,d}$	%	1404	3 <u>8000</u>	-
		于烟气中硫化氢积分 数	#H ₂ S.ftpd	%	53.2	1222	72_0
		干烟气中 CmHa 积分数	$\varphi_{C_uH_u,f\otimes d}$	%		35.735	100
		干烟气中二氧化硫体 积分数	$\sigma_{SO_2, (\hat{g}, d)}$	%	-		-
		干烟气中氮气积分数	o _{Nofad}	%	1440	84.00	5
		干烟气中一氧化氦体 积分数	O HO, Fa d	%	-	24-12	
		烟气中实源 S02 质量 浓度	$\rho_{SO,N}$	mg/m ^t			
		实测排烟过量空气系 数	α	-	-	1, 46	1.60
		省煤器后烟气含氧量	$(O_1)_m^{\epsilon}$	%	2000 N	(5/3)	×
		省煤器后实測过量空 气系数	a_m^*	-	_	201	755_77
		省煤器前烟气含 R02 量	$(RO_i)_{i \in I}^r$	%	77575	i e	11 TO 12 TO
		省煤器后烟气含 R02 量	$(RO_1)_{A3}^{\bullet}$	%		(C. SII) -	2 -0 28
		省煤器漏风率	$\eta_{\rm gan}$	%	-	- 	
	护	炉膛浓相区烟温	$\theta_{\rm m}$	r		Name of the last	3000
	内	炉膛中部烟温	$\theta_{\rm br}$	r			5=4=5
	温度	炉膛稀相区烟温	$\theta_{\rm sx}$	r		-	E
	分布	炉膛出口烟温	05	rc	=100		_ 970=8
	-alt	分离器出口烟温	$\theta_{e_{i}}^{\sigma}$	rc		792275	2223
	1	过热器出口烟温	θ_{ν}^{r}	rc		-	-
	1	省煤器进口烟温	t _{oxxxx}	ю		1 to - 10	
		省煤器出口烟温	$I_{\hat{R}\hat{R}\hat{C}\hat{G}b}$	'C	=700	2000	
	8	省煤器进口烟温	t _{fediene}	c		-	

第 22 页 共 30 页

FJB/JK1126-2022

	項目名称					试验数值		
			符号	单位	设计值	工况—	二男二	
						2023, 11, 29	2023. 11. 29	
	炉内	省煤器出口烟温	t _{SEAHON}	r	190. 3	190. 4	183.9	
	温	床压	p_{σ}	KPa	-			
	度分	稀相区压力	p_{\pm}	Pa		1000		
	布	炉膛出口压力	p_5^*	Pa		1	TALL.	
		分离器出口压力	ρ_3^*	Pa	-		1244	
		过热器后压力	p_{ω}^{σ}	Pa	-	1.000	-	
		省煤器后压力	p _{see}	Pa	=1=3	122	740	
		排烟压力	p _p	Pa				
	炉内	床压	ρ_{∞}	КРи		100		
		稀相区压力	\hat{F}_{in}	Pa		-	722	
		炉膛出口压力	p_s^*	Pa		3900		
	压	分离器出口压力	p_3^*	Pa		(B)	5 51X	
	力分	过热器后压力	p'',	Pa	F2353	-		
	布	省煤器后压力	p**	Pa	323	9800	84	
		排烟压力	p*	Pa	-	-	-	
	一次风空预器前空气温度		f,	С	20	20, 5	23. 8	
Ī	一次风空预器后空气温度		t _{for}	TC		9,00,00	501X-	
	二边	《风空预器前空气温度	t' _{thy}	C		(18)22	- Tann	
	二世	大风空预器后空气温度	t'' _{16,9}	τ	-			
Ī		风室温度	ė _t ,	τ		1222		
1	20	一次风机出口风压	p's	KPa	-			
ı		风室压力	p _n	KPa	2775	370.55		
1	- 1	二次风机出口风压	p_{06}^{\star}	KPa	555			
Д	返	料高压风机出口风压	p _f ,	KPa		2.00		
空	=	二次风环形风道压力	P ₁₃₀	KPa		-	_	
4		、系统边界的一次风质 量流量	q_{nos}	kg/h		-	: -	
	进)	人系统边界的二次风质 量流量	$q_{\kappa s}$	kg/h	1212	-	-	

第 23 页 共 30 页

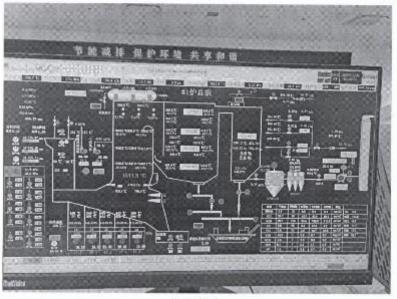
FJB/JK1126-2022

	项目名称				试验	数值
	试验工况序号	符号	单位	位 设计值	工况一	工祝二
	试验日期				2023. 11. 29	2023. 11. 29
	进入系统边界的其他空气 质量流量	q_{exio}	kg/h	272	NEW CE	
	空气相对湿度	h	m ^s /h	-	61. 3	53. 0
7	基准温度	t_{∞}	τ		25	25
j	大气压力	p_u	Pa	-	99620	99340
	炉澄占燃料总灰量的质量 分數	W_j	96		90	90
ļ	沉降灰占燃料总灰量的质 量分数	w_{pe}	%			-
	飞灰占燃料总灰量的质量 分数	W_{u}	%		10	10
5.	沉降灰可燃物的质量分数	$\mathcal{W}_{z,pd}$	%		-	(41)
灰	炉渣中可燃物的质量分数	$W_{C,S}$	%		4. 78	5. 16
查片	飞灰中可燃物的质量分数	Wear	%		7, 24	7. 59
性	灰溢平均可燃物的质量分 数	W _{orses}	%		5. 30	5, 72
	灰(釜)温度	t _m	°C	38	600	600
	飞灰温度	f _m	TC	_	190. 4	183. 9
	沉降灰温度	t_{pd}	τ	-	0.0000	1000
	排烟热损失百分比	q_z	%	14. 44	12. 10	12. 30
	可燃气体未完全燃烧损失 百分比	q_i	%	0.30	0.01	0.00
	固体未完全燃烧损失百分 比	q_{i}	%	2. 72	4. 14	4, 82
	锅炉散热损失百分比	$q_{\rm s}$	%	0.75	0.75	0, 75
K	灰渣物理热损失百分比	q_{\circ}	%	0.74	1.36	1. 47
	石灰石脱硫热损失百分比	q,	%			-
為平衡	外来热量与燃料低位发热 量的百分比	$q_{\rm ev}$	%	-	-0, 28	-0, 08
及	锅炉其他热损失百分比	q_{st}	%		500	
o de	锅炉热效率	ή	%	81. 05	81.35	80, 58
ů,	锅炉每小时燃料耗量	В	kg/h		-	
重复	锅炉每小时石灰石耗量	$B_{\rm star}$	kg/h			
	炉膛容积热负荷	q,	MW /m²	-550	\$29091	25.0

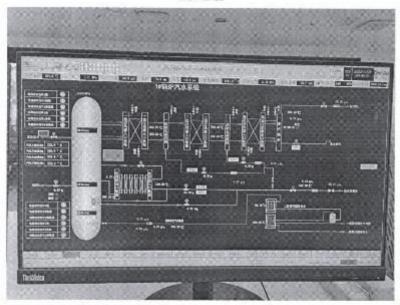
第 24 页 共 30 页

FJB/JK1126-2022

	项目名称				试验	数值
	试验工况序号	符号	単位	设计值	工祝一	工况二
	试验日期		2023. 11. 29 MW /m² — — °C — — °C — — % — —		2023, 11, 29	
	炉膛截面热负荷	q_r			-	-
	修正后的排烟温度(进风温 度偏离)	-	1	_	-	-
七、換算	修正后的排烟温度(给水温 度偏离)		°C	-	-	
	修正后的排烟热损失百分 比	q_{z_*}	%	_	-	-
	修正后的可燃气体未完全 燃烧损失百分比	q_{is}	%		_	1
到设计	修正后的固体未完全燃烧 损失百分比	q_{4}	%	_	<u> </u>	-
条件	修正后的锅炉散热损失百 分比	$q_{\rm tx}$	36			=
下的	修正后的灰渣物理热损失 百分比	q_{i_n}	%	-		f 9 <u>=</u>
锅炉热效·	修正后的石灰石脱硫热损 失百分比	$q_{\gamma_{\kappa}}$	%	-		-
	修正后的外来热量与燃料 低位发热量的百分比	q_{ω}	%	W 32		Name of the last
率	修正后的锅炉其他热损失 百分比	$q_{\scriptscriptstyle \rm orbit}$	96	-	5 -	N==
	換算到设计条件下的锅炉 热效率	η_{π}	96	-	-	19

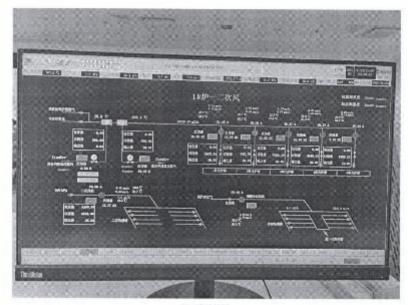

第 25 页 共 30 页

11.2 附录 2 锅炉运行表盘参数


序号	参数名称	单位	记录频率	试验工况I	试验工况Ⅱ
1	主蒸汽流量	t/h	15min	20. 3	20. 4
2	主蒸汽温度	°C	15min	396, 7	397. 6
.3	主蒸汽压力	MPa	15min	3. 76	3, 76
4	给水流量	t/h	15min	19. 1	19.3
5	给水温度	°C	15min	103. 3	101.1
6	给水压力	MPa	15min	5. 16	5. 17
7	烟气氡量 (排烟出口)	N.	15min	3, 9/6, 0	4.8/7.9
8	炉膛出口烟温	°C	15min	880.7/845.9	883, 6/837, 4
9	低温过热器出口烟温	°C	15min	300, 7/307, 9	297. 5/303. 6
10	一次风流量	nº/b	15min	16333. 29	16820, 05
11	一次风进口温度	rc	15min	24. 1	25, 5
12	一次风出口温度	τ	15min	203. 4	203. 4

第 26 页 共 30 页

11.3 附录 3 锅炉运行表盘截图



锅炉总貌

汽水系统

第 27 页 共 30 页

烟风系统

第 28 页 共 30 页

11.4 附录 4 试验会签表

-	锅炉性能试验会签表
达拉	1. 机侧运行正常。运行条件满足试验要求 2.所有测试仪器仅表符合试验要求。 3. 试验工况与试验计划要求相符。 4. 试验各项准备工作已接要求布置就结。 5. 工作人员已接要求全部到位。安全技术情境已按规定布置完毕。 6. 参与试验的测试人员已进行技术交成。测试人员均能胜任本岗位的测试部任务。 参与本次试验的各方人员通过确认。已一致认为保护出口主意汽流要 2.0.7 以的保护效率性能试验一切准备工作已致结。同意于2.0.3 年11 月2.9 日 9 时 10分 起正式开始试验。 确认人员 电厂(签名)。
UC Số KR	试验(签名), 口(3 日期; 201),1[.29
M)	试验期间均严格按照《电站锅炉性能试验规程》(GB/T10184-2015)锅炉性能试验 方案以及试验各方商定的结果进行,试验机组负荷稳定、锅炉主要各项参数未出 现影响试验进行的液动。
试验给 東府	1.整个试验工程中,机组运行工程符合试验要求。未出现影响试验进行行的影响因素。 2.试验期间所有期量的结果、采集的试样均有效。 3.所有记录数据均有效。 参与次试验的各方人员通过确认,已一致认为保护出口主席代值以2/-3-1/-的识价效率试验连续期试时间已符合要求。本次试验工程有效,同意于2013。年上月29日41时12分结束试验。
	电广(签名),子员工
	日期, 日期, 日期, 日期, 日期,
1	以於(宣名), 时间(3 日期, 2-23,11,29

第 29 页 共 30 页

	锅炉性能试验会签表
ut to fi	1.机阻运行正常,运行条件满足试验要求 2.所有测试仪器仪表符合试验要求。 3.试验工况与试验计划要求相符。 4.试验各项准各工作已接要求合置数据。 5.工作人员已按要求全部到位,安全技术措施已按规定布置完毕。 6.参与试验的测试人员已进行技术交流,测试人员均批胜任本岗位的测试序任务。 参与本次试验的各方人员通过确认,已一致认为锅炉出口主蒸汽流量 19.5 站 的锅炉效率性能试验一切准备工作已数据。网络于2023年31月29日以 时10分 起正式开始试验。
	明八八四四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二
	「商(签名)。日期。
	県永包(佐名) ₁ / 日期 ₁ /
	以验(监包), 时间3 日期, 2013.11.27
状验期 问	试验期间均严格按照 (电站锅炉性整试验规程) (GB/T 10184-2015)锅炉性整试验 方案以及试验各为商定的结果进行。试验机组负荷稳定、锅炉主要各项参数未出 现影响试验进行的波动。
试验结 東籍	1.整个试验工程中。机组运行工况符合试验要求。未出现影响试验进行行的影响因素。 2.试验期间所有测量的结果、紧集的试择均有效。 3.所有记录数据均有效。 参与次试验的各方人员通过确认。已一致认为锅炉出口主蒸汽流以
	明广(签名), 沙沙沙鱼 田明, 2007年29.
	「商(签名):
	总表包(签名): 日期,
	WH (50) 1 10 185 11 11 10 10 10 11 11 11

第 30 页 共 30 页

附件 20: PNCR 技术协议

编号: 20220707

福建省环境保护股份公司 高分子脱硝系统

技术协议

买方:福建省环境保护股份公司 卖方:广州绿华环保科技股份有限公司 2022年7月

1、项目模况

福建省环境保护股份公司垃圾焚烧发电炉气风箱设计规模为日焚烧处理生活垃圾 600T,焚烧线采用 2 台 3000/d 机械炉排炉。目前烟气净化采用 SNCR 脱码→半干式脱酸→ 下法脱酸→活性炭吸附→布袋式除尘。原炉内 SNCR 脱码方法设计的氮氧化物排放浓度小 于 200mg/m³,实际满负荷运行都在 200mg/m³以上难以达到目前福建省环保厅提倡超长排放要求。

本方案改造设计在原有 SNCR 脱硝系统基础上进行升级改造。增加两会 PNCR (HSR)高分子版确设备系统和一会 PNCR (HSR) 脱硝备用应急系统。进一步减少摄氧化物排放总量和降低排放浓度,即达到氦氧化物排放小时均值小等于 100mg/m。 文更垃圾类烧炉别气层硝的深度治理,甚至实现超低排放来滴足更加严格的地方要求,为碳达峰、碳中和、绿水青山做出贡献。

本合何范围为: 所分子贩耐系统的功能设计、结构、性能、安装、调试、试验、环保 验收等方面。

2、设计条件

2.1 原烟气参数

表 2-11 焚烧炉烟气参数

序号	名称	参数	备注
1	炉排类型	炉排式焚烧炉	
2	焚烧垃圾量	300t/d	
3	焚烧炉数量	2	
4	烟气量 (设计值)	70000 Nn³/h	单台
5	焚烧炉超温度	>850 °C	
6	烟气含气量	5-8%	
7	Mix 初始排放浓度	350 ng/Nn3	十基, 11502, 设计值
8	SACR 脏硝之后 NOx 浓度	<250 mg/Xm3	干基, 11502, 设计值

★2.2 烟气排放限值

表 2-2; SNCR 烟气排放限值

序号	名称	参数	各注
1	NOx 排放浓度	≤250 mg/Nu3	干基, 11902

表 2-3: PNCR 烟气排放陨值

序号	名称	参数	各注
1	NOx 排放浓度	≤100 ng/Nn3	干赦, 11902
2	氨选选	≤8ppm	

2.3 设计原则

- (1) 放酵系统设计的战档率应满足国家和地方环保的大气污染物排放标准;
- (2) 采用的原铂工艺技术成熟。原租性价比较高;
- (3) 展形系统能长期稳定运行:
- (4) 脱硝丁程在工艺选择和设备布置中。充分考虑现场条件;
- (5) 优先考虑复合批销剂有可靠稳定来源的股硝工艺。
- (6) 脫硝系统运行管耳便拼;

2.4 技术规范与标准

本规气脱硝系统的工艺设计。制造、安装、调试、试验及检查、试运行、考核、最终 交付等, 满足但不限于以下标准规范与技术要求;

《生活垃圾焚烧污染控制标准》(GB 18485 2014)

《生活垃圾焚烧氦氧化物排放标准》DE35/1976-2021

《锅炉大气污染物样放标准》(GB 13271-2014)

(大气污染物综合排放标准) (GB 16297-1996)

《中华人民共和国固体废物污染物环境防治法》

《工业企业噪声控制设计规范》GB/T50087-2013

《大气污染治理工程技术寻别》出2000-2010

(供配电系统设计规范) G850052-2013

《低压配电设计规范》GR50054-2013

(钢结构设计规范) GB 50017-2003

《終結构、管道涂装技术规程》YB/T9256-96

《动力机器基础设计规范》GB50040-96

《工业企业设计卫生标准》GBZ1-2002

- 3、PNCR (HSR) 高分子脱硝原理及工艺设计
- 3.1 高分子脱硝剂及原理
- 3.1.1 脱硝还原剂

脱硝还原剂选用高分子脱褐剂,具体情况说明如下;

- 1) 主要成分; 高分子有机多胺类化合物;
- 2)性能: 服務活性高,安全环保(不然不爆,无度蚀性、不挥发、不含重金层),具有良好的流动性和防糖性。
 - 3) 粒径; 0.1-3.5mm;
 - 4) 含水率: 至0.5%;
 - 5) 堆积密度; ≥1g/cm;
 - 6) 包装: 采用双层防潮包装, 50kg 袋装或吨袋。

3.1.2 高分子脱硝原理

通过专用高分子脱硝气力输送装置和安装在炉壁上的高分子荫剂专用喷枪。将高分子 股硝剂均匀喷入温度约 850-1100℃的垃圾焚烧炉膛内,使其完全裂解气化和扩散后。使达 原剂与炉膛内的高温烟气充分混合。并与烟气中的氦氧化物发生还原规硝反应,规模率可 达到50-895。化学反应方程式如下:

NOx + {高分子脱硝剂} → N_c - M

高分子脱硝剂; 高分子有机多胺类化合物脱硝剂。

Mr. 脱硝过程中形成的还原产物,如 CO。和 H.O 等元害气体。

3.2 工艺流程

通过上科装置。将 PNCR (HSR) 高分子脱棉剂加入料仓,通过料仓底部的卸料阀、受额给料机等。将粉粒脱硝剂定量给至文丘里加速室。再由罗茨风机产生的输送气体将粉粒脱胡剂吹送至各个物料分配器 均匀分配好后自分别输送至各个喷枪 最终均匀喷入 850~1050 C高温区域内,使 PNCR (ESR) 高分子高效脱矿剂被高温裂解的同时。与烟气中的 NOx 发生还原股硝反应。使净烟气 NOx 浓度达到排放标准。高分子原相系统示意图如图 1 所示。具体的系统工艺演程,见图 2 所示。

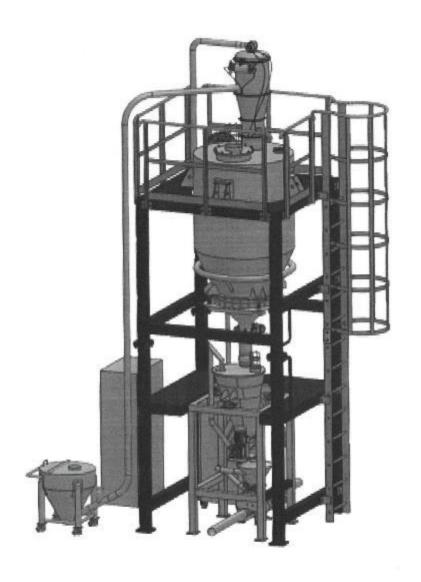


图 1 PNCR 高分子脱档系统装置图

图 2PNCR 高分子股硝系统工艺流程图

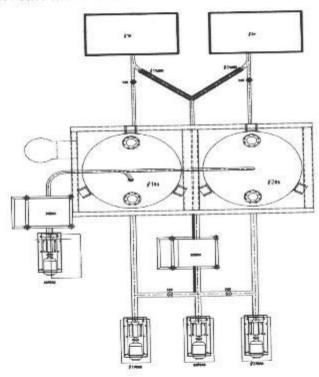
3.3 系统组成和布置方案

3.3.1 PNCR 高分子脱硝的系统组成

本次 PNCR 高分子脱硝系统改造,包括为 2 台类認定配置 2 查 PNCR 高分子脱硝系统和 1 套备用应急系统的设计、供货、安装、调试及相关服务。系统包括储存系统、给料系统、输 送系统、喷射系统、备用应急系统、压缩空气系统以及配电、程控系统等整套完整系统。

每台炉配置1个仓罐,每个仓罐配置助流系统、伴热系统、高低料位报警、振打器以及 仓罐压力释放阀、进料口、人孔门、除尘器系统等, 满足存料及检修要求, 避免物料板结。

每个仓罐底部配置手动插板门,手动添板门下部接基型卸料阀、文丘里喷射器下料口, 文丘里喷射器入风口连接罗次风机风管和出口与输送管道连接。


从罗茨风机出口至晓枪入口之间管道上布置气动鞣阀、气动球阀、保证管路切换膨畅。

同时在文丘里加速室前设置压力远传信号点。

收舱采用广州绿华还保自主设计的三流体于希脱珀喷枪,喷枪选用 3108 耐高温不锈钢 材质,三流体设计是通过罗茨风机将物料输送至物料分配器均匀分配后进入喷枪入口,物料 在喷枪内高速有效的吹入炉膛,喷枪另外设计有冷却风保护装置,可有效防止物料堵塞和喷 枪高温变形。另外,料仓和输送管道选用防堵防结系的材质,并有防堵保护系统。

3.3.2 PNCR 高分子脱硝设备布置

PNCR 高分子脱硝设备布置在锅炉就近位置上,方便运输物料、检修等即可。初步平面 布置如下,具体以现场施工图设计为准。

此图采用两用一备布置方式

3.3.3 PNCK 脱硝噴椒布置

喷枪初步设计每台炉每层 8 文, 其两层 16 支喷枪均匀布置在 850~1000 笔温度区间的炉壁上,每层可以根据喷枪入点温度变化实现自动切换,达到最佳反应温度,提高反应效率。减少物料消耗量,具体再根据现场实际进行详细布置。

4、技术要求

4.1 高分子脱硝系统投运

NOx 的排放量目均值可以控制在 100 mg/Nm²以下, 小时均值控制在 140 mg/Nm²以下, 氨 逃逸≤8ppm。

4.2 脱硝剂料仓

料仓底采用仓垒推动电机和活化料斗,在设计时充分考虑仓壁振动电机的功率及活化料 斗的规格,防止板结和架桥,料仓与星型卸灰阀间设置软连接。料仓材质选用不锈钢,外表 血采用铝皮保温,保证锃亮美观。

4.3 料位报警器

料位信号分别设置高料位,低料位报警,高料位报警表示停止加股箱剂。低料位(仓内 还有3°3.5 小时用量)表示需要向仓内加股箱剂。仓内料位计信号应通过PLC通信方式送入 DCS,在中控室有相应灯光及报警信号,以便值班人员进行控制直视。

4.4 星型卸料阀及文丘里加速室

星型御料阀及文丘里加速室的选用,必须保证落料时,落料量满足买家要求的范围。

4.5 钢结构

钢结构应根据《钢结构设计规范》GB50017-2014 的要求进行设计。如果采用中国以外 的标准时,钢结构设计应将计算结果按中国国家标准《钢结构设计规范》GB50017-2014 近 行换算对比。

结构应有安全可靠的支撑体系。允许应力应符合中国现行规范规定的钢种的规定值。当 采用高强螺栓来设计节点时,该节点应符合中国批剪型高强螺栓或 ALSC "使用 ASTM A325 或 A490 螺栓时的结构节点规范"的要求。

防腐施工在钢结构制做厂家的厂房内完成,实方向买方提供足够的现场防腐修补用材料。 结构设计中应考虑到所有可能施加的静荷载、活荷载(包括雪荷载、雨荷载)、风荷载、地 震荷载、设备荷载、温度荷载以及施工检修荷载。

在设计中还应考虑结构的稳定性,特别是对钢结构的受压杆件,要注意不产生压曲变形。 钢结构的设计应简化现场安装少骤,尽量减少现场焊接。

4.6 运行成本

针对单台炉的测气参数。采用 PNCR 高分子脱精剂。则其消耗量及相应的运行费初步核算如下;

4.6.1 高分子脱销剂运行费用:

22

接 300 吨处理量计算, SNCR 处理到 250mg/Nm3 后, PNCR 系统可以降到 100mg/Nm3 以下:

序号	名称	单位	数值
1	年运行小时	小时/年	8000
2	脱硝剂小时耗量	kg/小时	10-20
3	脱前剂年耗量	吨/年	80-160

4.6.2 整套设备运行费用

序号	名称	单位	数值	
1	年运行小时	小时/年	8000	
2	系统总耗电量(实际耗电)	kV	22	
3	年耗电量	万度/年	17. 6	

5、设计界限和供货范围

5.1 设计界限

类方负责规箱剂存储用仓罐、钢结构及平台扶梯等全套设计,基础由买方负责;实方负责加工、制作、安装: PNCR 高分子脱硝系统设备、钢结构、及平台扶梯等。

卖方的设计包括从罗茨风机出口管道、文丘里喷射器、物料分配器至喷枪入口之间的 管道 (输送风粉混合物),还包括弯管、手动球阀、软管 (含快速接头)、分配器、支管道。 平台以及压缩空气用管道 (气源点待定)、减压阀、软管 (含快速接头)、球阀、管道固定支 架、紧固件及其他附件等。

卖方的设计还包括仓罐底部的手动插板门, 星型卸料器(气封式), 气动转向阀, 助施 系统、伴热系统、高低料位报警、指打器以及仓罐顶部呼吸阀、除尘器系统、锁气器、小科 斗的称重模块、文丘里室等。

类方负责整套工艺的控制流程设计,包括程序设计、电缆槽盒、桥架布置等。

5.2 供货范围及要求

本项目供货范围包括 2 台沪配套 PNCR 高分子脱硝系统的罗茨风机及其罗茨风机出口安全门(带压力表)、膨胀节、气动蝶阀及其法兰、脱硝剂存储用仓罐、钢结构及平台、仓罐 顶部呼吸阀、除尘器系统、助流系统、伴热系统、高低料位报警、振打器、气动转向侧、小 料斗的称重模块、卸料器〈气封式〉以及文丘里室,主管道〈输送风粉混合物〉、大弯头、 透明软管(含快速接头)。气料分配器(带法兰)、支管道、支管间间、喷枪、压缩空气用管道、减压阀、软管(含快速接头)、球阀以及变送器、配电柜、程控柜、电缆、电缆槽盒、桥架、金属软管及安装附件等整套 PNCR 高分子照相系统设备。供货设备必须能够满足 PNCR 高分子服确系统的完整性。

2 台炉配置 3 台罗茨风机。每台罗茨风机出口均需配置租立一套安全门(带压力表)。 膨胀节、气动蟆阀及其法兰、远传压力表等。

罗茨风机出口至喷枪前主管道及支管道、以及喷枪均在卖方供货范围内。

仓罐流化仪用压缩空气管道由买方引至仓罐附近 1 米 (哲定),其余流化用压缩空气管 路及手动阀门由类方负责供货。助流系统接口在总阀之前(总阀为助流系统总阀),连接压 缩空气总管。

仓號頂部除尘器用压缩空气由由买方引至仓罐附近1米(暂定)。其余反吹用管道、缓冲罐、电磁脉冲阀等由套方负责供货。除尘器系统内反吹打接口在总阀之前(总阀为反吹扫总阀),连接压缩空气总管。

唆枪用压缩空气由买方引至喷枪入口处, 所用压缩空气管道、减压阀、球阀等由类方负 责供货。

买方提供 380V AC 电源至配电柜。

卖方预留至 DCS 通讯接口,通讯协议暂定为 DP。至 DCS 通讯电线由页方提供。PLC 能是示屏。具备就地及 DCS 监视、控制功能。

卖方提供的设备包括以下, 但不限于;

PNCR 高分子股碩系统供货具分为六大块: 送风系统、储料及送料系统、管道系统、喷 射系统、各用系统、控制系统等。

5.2.1 送风系统;

1) 变频罗茨风机

供货范围包括3台罗茨风机,其中1台备用,采用两用一备。

供货范围包括底座、防震垫及地组螺栓、空气滤清器、进出口清声器(包括连接的法兰 及其连接件、支撑件等)、安全阀、绕性接头、出口充油压力表、减震垫、皮膏、皮带罩、 润滑油、齿轮油等。

风机进、出口侧非金属膨胀节、法兰及连接件等附件。

机壳(法兰配对提供,包括其连接件)。

风机转子(包括叶轮、主轴、轴承、联轴器等)。

主轴承箱。

联轴器的保护罩。

配套驱动电动机和联结器(电动机防护等级>IP55, 做防雨外壳)。

安装检修专用工具。

电动机温度保护。

连接于该卖方所供设备、器材之间的电缆。

机壳内部防腐防磨处理、所供风机外表油漆。

每台风机配置一个变须器、变频器由实方供货。

2) 罗茨风机出口1个安全门(帝压力表)

安全们配置正反法兰及紧固件。

3) 设置1个压力变送器

配置Φ14×2取样管、接口及相应仪表框。

4) 1个膨胀节

膨胀节配置正反法兰及紧置作。

5) 蜈斑

级闪起置正反法兰或卡维及紧固件,裹门最终数量以系统图为准。

- 6) 其他配套、附件等必须品
- 5.2.2 储料及给料系统:
- 1) 脱硝剂存储用仓罐及上料系统
- 仓罐采用不锈钢材质。料仓容积设计 2.5㎡, 正常使用满足 3 天用量: 料仓设有检修孔, 便于设备维修管理; 料仓底部设有窥镜, 可实时观察料仓下料情况。
 - 2、上科系统采用正压上料。
- 2) 钢结构及平台、扶梯

钢结构与平台的设计、制作、安装以及稳定、安全性由实方全部负责。

3) 手动插板门(带助流及附件)

1 个仓罐配置一套。

- 4) 气动蝶鲷
 - 1个仓罐配置一套。
- 5) 卸料器(含碱速机和电动机)

1个仓肆配置1套。

6) 助流系统

包括仓罐上的助流气垫、空气软管、压缩空气组阀(集成箱内)。同时1个仓配置1个 电磁阀220V AC。供货包括压缩空气管路及减压阀(滤油、带压力表)、球阀。

1个仓罐配置一会。

7) 作热系统

1 个仓罐配置 《套加热带、保温层和热电阻(接入 PLC, 控制件热启停)。

8) 高低料位

1 个仓罐包括一个高料位监测和一个低料位监测。

9) 振打器

1个仓储2个。

10) 仓罐顶部压力释放阀

1个仓储配置1只。

11) 除尘器系统

除尘器系统包括一台高压离心式通风机,布袋除尘器,以及一套反吹打系统。

反吹扫接口在总阀之前(总阀为反吹扫总额)。

每个仓罐配置一套除尘器系统。

12) 文丘里喷射器

文丘里喷射器采用不锈钢材质, 卖方提供正反法兰、垫片及螺栓等。 文丘里喷射器设计合理的负压值, 满足正常给料的要求, 落料量满足输送要求。每个仓罐配置上套文丘里加速室。

13) 称重小料斗及称重模块(每个仓储各置一会)

通过小料斗的称重模块反馈信号,主料仓的气动蝶阀开关定量给小料斗进行补料,根据控制系统指令在通过幂料器定量给料到文丘里喷射器,实现直观控制 NOx 数据的脱硝剂用量; 14)其他配套、附件等必须品。

5.2.3 输送系统;

1) 主管道、分配器、支管道

供货包含从罗茨风机出口管道、文丘里加速室至喷枪入口之间的主管道及支管道。1 台 护的喷枪数量根据锅炉外形尺寸进行科学配置。

分配器管定每台炉采用一分二和一分六配置结构,每台炉气料分配器暂定为其2个。

另外,供货范围包含主管道及支管道的支吊用料。

夸头采用大半径弯管,前后采用不锈钢法兰连接。

气料混合出口需3°5米的直段。

26

2) 管道视镜(含快速接口)

委方需提供管道视镜及配套接头,能够明确观察到内部气料流动情况,能够判断是否有 粉料。

3) 压缩空气系统

供货包含压缩空气用管道、减压阀(带压力表)、空气软管(含快速接头)、球阀及其他 附件等。

从母管引出压缩空气、将减压后的压缩空气引至喷枪附近,通过三通、截止阀(球阀 61/2*-PN16)、空气软管将压缩空气引至喷枪接口和分配器接口。

峻枪接口处快速接口由卖方系提供,买方配合。

5.2.4 控制系统

本系统采用变频下料阀送给料及气路输送相结合的方式。

2.4.1.1 控制流程

(1) 上料

现场上料准各工作备妥后,点击现场上料请求按钮,如控制柜为远方状态时运行人员在 DCS 接收此信号后,点击允许上料按钮,仓顶除尘器开启,延时 10s 后程控柜允许上料指示 打壳,现场开始上料, DCS 画面显示上料中。如控制柜为流地状态时,仓顶除尘器自动开启, 开启后允许上鲜指示灯亮,待上料结束后,现场上料人员点击控制柜上料结束按钮。仓项除 小器关闭,同时 DCS 画面显示上料结束。

(2) 给料

系統具备远程和戲地操作两种模式,远程操作可分为自动模式和手动模式,切換到自动 时所有设备和阀门不能手动操作,全部由程序执行,手动时操作员可以在 DCS 画面单操设备。 远程自动模式下中控室可以选择定量给料和定 NOX 含量给料两种模式。PLC 控制实时反馈脱 确剂用量信息。

- ① 定量給料模式,中控室在收到脫積剂給料系统发出的各妥信号后,选择定量給料模式,并及定好需要的脫積剂給料量(如10 赫兹对应的重量),远程启动脱積剂給料系统,系统开始运行。
- ②定 X0x 调节模式,中控室在收到脱硝剂给料系统发出的备妥信号后,选择 X0x 调节模式, PMCR 系统脱硝剂的给料量是由除尘器出口 N0x 测量值决定,通过 PID 运算来调节给料机变频器的频率,来实现对脱硝剂给料量的控制。

(3) 补料

PNCR 高分子股稻系统运行中,料仓低料位发出补料信号。打开上料系统\旋转卸料阀。

同时开启振动电机和助流阀、补料开始。

(4) 料位报警器

出與仓分别设置高料位,低料位报警,高料位报警表示停止加脱稿剂。低料位(仓内还有 3~3.5 小时用量)表示需要向仓内加脱稿制。仓内料位计信号应避过 PLC 通信方式选入 DCS、在中控室画面上有相应灯光及接警信号,以便值班人员进行控制控机。

(5) 将"远程/就地" 开关接到"就地"位置,用于现场实物标定、设备检修和航地操作。

5.3.1.2 程控柜描述及要求:

程控柜暂定为 2200mm(高) +1200(宽) +600(深), 2.0mm 厚,卖方可依据内部配件布置调整尺寸。最终需要方认可。能够完成 PNCR 各单元的全自动控制、管理、协调和控控。PLC 与总厂 DCS 采用 PROFIBUS DP 或者 MODBUS RTU 通信,总厂 DCS 可实规对 PNCR 高分子脱 组系统的各设备的启传和系统的监控。程控框采用通门了操作触摸屏。触摸屏可显示系统工艺流程、报警及 io 点位监控的画面,可进行参数设定和修改。主要功能包括页面切换、工艺画面监控、报警和参数修改等部分。

5.3.1.3 配电系统

- (1)配电系统描述及要求:配电柜特定为2200m(高)*1200(宽)*600(深),2,0m 厚, 卖方可依据内部配件布置调整尺寸,最终需要方认可。买方提供一路380VAC 电源及电 缆线至配电柜上段子,卖方负责将电源进行转换,供就地电机、阀门、仪表、PLC 使用,罗 茨风机和螺旋给料机采用变频控制。
- (3) 卖方在 PLC 电气柜中预图 PROFIBUS-DF 或者 MODBUS RTU 通讯接口, 买方负责将通讯电缆从 HSB 控制柜引至 DCS 通讯间, 卖方负责提供通讯 IO 点表、GSD 等柜关文件, 卖力配合 DCS 厂家完成 DCS 通讯和逻辑、画面组态工作。
 - (4) 卖方提供配电柜及程控柜的设计、安装、运行基础数据及相关条件;
 - (5) 电源; 低压电 380V/50Hz
 - (6) 接地方式; DV-S, 联合接地

28

- (7) PLC 至现场设备的电缆、配电柜(包括柜内变频器)至PLC柜及就速受电设备(包括电件热)的电缆电缆、信号电缆、热镀锌槽盒、穿线管、电缆金属软管、接头等辐射由卖方提供,控制电缆为全屏加对屏,实方负责提供电缆清册、按线图、桥架布置图。
 - (8) 布置方式: 全套设备室内布置。
 - (9) 配电柜及程控柜的色标待联络会时确认。
 - (10) 卖方负责程序的设计组态调试工作,控制程序在得到买方认可后方可使用。
 - (11) 卖方负责所供电气、仪控设备的安装、接线、调试工作。

5.4 供货清单

本供货范围包括了所有设备、技术资料、备品各件、安装、调试、服务及技术等。至少 包括以下内容。

表 4-1: 设备供货清单(包括但不限于)

两用一备

*号	名称	型分和规格	单位	数量	原产地和制造商名称各注
		一、鍩料单元			
1	上料装置	SS304	套	1	绿华环保
2	上彩风机	0, 05/5m²/1600rpm7.5KW	台	1	优质国产
3	土料金	V=2.5m³, 304,	É	2	绿华环保
4	钢结构、梯子平台	Q255B	k	2	绿华环保
5	压力释放阀	DN250、304 不锈钢	件	2	绿华环保
6	料仓除尘器	DMC-9, 脉冲喷吹式	件	2	绿华环保
7	高料位计	阻旋式	件	2	绿华外购
8	低料位计	阻旋式	件	2	绿华外购
9	仓壁操动器	分别定时控制,P=550W	삼	4	优质品牌
10	料仓电件热	包括加热带、热电偶	套	2	优质品牌
11	缓冲称重小料斗	304 不锈钢	套	2	绿华环保
12	称重系统	采用料仓称重模块(数据远传)	4	2	绿华定制

13	料仓保温	社酸铝棉	8	2	绿华环保
14	设备本体照明	LED	兵	1	绿华环保
	2/	二、输送单元		_	00
1	主料仓气动阀	301 不锈钢	台	2	级华环保
2	双螺杆卸料器	304 不锈钢	台	2	绿华环保
3	管道视镜	SS304	套	3	绿华环保
4	文丘里喷射器	SS304	件	2	绿华环保
5	软连接 (含抱箍)	切丝软管(附是 150°)	件	4	绿华环保
б	罗茨风机	0.06MPa/10m³/1850rpm/18,5KW	£1	2	百事德
7	压力变送器	操作温度: -15~100°C, 压力范围: -100kPa~150kPa	件	3	龙华或同等品牌
8	气动球阀	304 不锈钢	台	6	绿华订制
9	输送管道	SS304	套	2	绿华环保
10	大弧度弯头	\$\$304	件	20	绿华环保
11	压缩空气管道	SS304	査	2	緑华环保
12	管道支吊架	SS304	奁	2	绿华环保
13	分配件	连接配件及三通等	套	2	绿华环俣
		三、噴射单元			
1.	物料分配器	304 不锈鋼	件	8	绿华环保
2	气动螺阀	304 个锈钢	件	8	绿华订制
3	调压阀	QTY-15	个	6	国标品牌
4	脉冲电磁阀	24V	个	60	绿华外购
5	电磁阀	24V	个	14	国标品牌
6	三流体喷枪	3108 不锈钢	根	32	绿华环保

7	金属钢丝软管	钢丝透明软管(耐温 150°)	件	32	级华环保
8	配套连接法兰	304 不锈钢	filt	2	绿华环保
g	储气罐	60L	个	10	緑华环保
10	喷枪冷却系统		在	4	绿华环保
11	喷枪吹扫系统		Æ	4	绿华环俣
		四、备用应急单元			
1	各用料仓	SS304. 1m²	48	1	绿华环保
2	备用罗灰风机	$0.06 \mathrm{MPa}/100^{3}/1850\mathrm{rpm}/18.58 \mathrm{W}$	会	1	百事機
3	V型卸料阀	88304、藏邃电机	套	1	绿华订荆
4	文丘王喷射器	SS304	套	1	級华环保
5	手动線視	SS304	件	3	緑华订购
		五、控制单元			
1	PLC 控制、配电柜	西门子(给 DCS 提供 DP 通讯数据)	fr	1	绿华环保
2	电微		套	2	国标品牌
3	电缆穿管及桥架	镀锌材质	4	2	绿华外购

6、性能保证与考核

6.1 性能保证

高分子脱硝系统设备的可用率在正式移交后的一年中大于98%。

可用率定义:

可用率=(A-B-C)/A×100%

- A: 高分子脱稍系统统计期间可运行小时数。
- B: 高分子脱稽系统统计期间强迫停运小时数。
- C; 高分子脱硝系统统计期间强迫降低出力等效停运小时数。

6.2 性能考核

质保期内如果确定是由高分子脱硝系统设备选型、制造、施工、调试等原因造成未能达 到设计要求或者出现质量问题,由卖方重新免费更换或者维修好。

6.3 质量保证

卖方采取有效措施,保证系统符合本技术规范书的要求。

在整个质保期内,非人为因素造成的设备损坏,应由卖方及时免责更换,并且根据因此 而造成的经济损失大小承担一定的经济责任。

- 在正常的使用环境下,主体设备使用寿命不小于30年。
- 实方提供的上述设计和供货设备必须是技术先进、质量可靠的,并且应在相应工程或相似条件下有运行并超过两年。已证明安全可靠。
- 所系统调试期间,实方必须及时继有一定能力的专业技术人员到现场进行技术服务,解决安装调试中的问题。
- 股各安装调试过程中,由于制造质量造成的不符合规定的偏差。必须有文字记录。 由卖方处理,费用也由类方自负。
- 质量保原期:整套系统72小时运行合格后12个月,并保证年运行时间能够≥8000 小时,同时通过环保验收。
- 步方应对合同中提供的主要部件建立质量保证计划,设备制造应与规格书及标准
 相一致,并符合操作条件及使用要求。
- 所有质量保证计划应在制造开始前制定出,并在签订买方认可合同后等个月内提交。质量保证计划将作为合同的组成部分,实方应严格遵守。
- 类方应提供成套产品的检验程序、试验记录和全过程监造计划。
- 实方保证在脱硝剂喷射脱硝系统运行第一年内,因制造质量不良而引起的强迫停机次数不超过2次。
- 对易损件的使用寿命不少于12个月。

7、项目实施进度计划

进度计划表

7 <u>16</u>		制造交货进度表	
序号	时间	内容	备注
1	20 天	完成所有设备生产	合同生效后
2	25 天	一次性交折	合同生效后
ā		技术资料提交进度表	
1	7天	工艺图纸 8 份	合同生效后

2	7天	电气图纸 8 份	合同生效后
-:		现场服务计划表	
1	7天	设计联络和技术交底	合同签订前
2	2 大	设备清点、工地服务	设备到场后
3	20 天	设备安装	设备安装十
4	3 天	明试	设备运行后
5	2天	性推验收考核	设备运行后

8、售后服务方案

8.1 售后服务方案

质保期内和质保期满后售后服务的具体实施措施,包括但不限于以下内容;

- (1) 卖方免费提供系统现场调试服务;
- (2) 卖方保证舱提供可随时上门进行维修及检测的服务,设备出现故障时,在接获采购人电话在2小时内给予明确答复,在24小时内派遣有资格的经验丰富的维修工程师到现场提供免费维修服务。

为确保服务的及时性,我司在全国成立了服务网点,见表18 斯示。

序号	售后服务网点	详细地址	人员名单	固定联系电话	手机号码
1	华北区	河南省卫輝市城郊镇 府旁	刘如民	020-82112350	13937314188
2	华东区	河南省卫辉市城郊镇 府旁	李炳伟	020-82112350	15736931861
3	西部区域	山西省赛城县三期国 际A座	安军华	020-82112350	13462277575
4	华南、华中区	广州开发区掬泉路3号	刘家林	020-82112350	17373214688

(3) 版保期后设计方指定维核工程师定期的回访用户(3-6 个月)。解决设备与系统运行中可能出现的疑虑,排除谐在的故障,使设备与系统保持在良好的工作状态。

(4) 质量保证期

质量保证期为。72-24 小时性能验收合格之目或者 PACR 项目性能验收通过后起 12 个

- 月,并在质保期内提供相应满足系统正常运行的备品备件。
 - (5) 技术服务

热线服务。设计方将提供一条热线电话以供证及时就是实方的服务要求。

8.2. 培训计划

- (1)为使合同设备能正常安装和运行,卖方有责任提供相应的技术培训。培训内容应与工程进度相一致。
- (2) 培训的时间、人数、地点等具体内容由买方和卖方双方商定。
- (3) 卖方为买方培训人员提供设备、场地、资料等培训条件。

培训计划表

ote ET	1.0x 2001 -6- 1002	计划 培训教师构成 人月数 职称 人数	培训教师构成	16.15	100	
序号	培训内容		职称 人数		地点	各注
1	工艺及功能说明	3	工程师	2	项目或场	
2	紧急措施	3	工程师	2	项目现场	
3	日常检修、管理项目	2	工程师	1	项目现场	
4	定期检修、维修作业	2	工程师	1	項目现场	
5	安全教育	1	工程师	1	项目现场	
6	答案。[4月	1	工程师	1	项目规场	

买方(盖章)。福建省外域保护股份公司 类方(盖章)。广州绿水外保料按股份有限公司

买方法定代表

或授权代表(签字):

卖方法定代表

或授权代表了签字

附件 21: 自行检测合同

技术服务合同

合同编号: FDXM23-07-011

项目名称: 上拉	在生活垃圾焚烧发电厂年度自行监测技术服务
委托方(甲方)	:上杭红新能源科技有限公司
受托方(乙方)	: 福建省永正生态科技有限公司
签订时间:	2023年 10 月 07 日
签订地点:	福建省上杭县
有效期限:	2023年10月07日-2024年10月06日

中华人民共和国科学技术部监制

技术服务合同

委托方(甲方): _	- 杭红新能源	科技有限	公司	
住 所 地: 福建省	f上杭县临城	镇土埔村	狮子潭路	10 号
法定代表人: 陈键				
项目联系人: 蓝庭斑	\$			
通讯地址: 福建省	- 杭县临城镇	土埔村狮	行潭路 10) 号
电 话: 0597533	5518	_传 真		
电子信箱:				
受托方(乙方):	建省永正生态	5科技有	限公司	
住所地: 福建省	福州市闽侯	县祥谦镇	铺前路1	0号4车间2层
法定代表人: 何杰				
项目联系人: 郭旭	E			
通讯地址: 福建省社	国州市闽侯县	祥谦镇轩	前路 10 号	34车间2层
电 话: 1886016	5660 传	真	1	3 - 5 - 40 - 11/10/20 70/10/10
电子信箱: yzst@yz	online.net			
太公同田方禾は	FZ 方就 上本	计上 活 位	多林林安日	工生度自行监

本合同甲方委托乙方就 <u>上杭生活垃圾焚烧发电厂年度自行监 测技术服务</u>进行专项技术服务,并支付相应的技术服务报酬。双 方经过平等协商,在真实、充分地表达各自意愿的基础上,根据《中华人民共和国民法典》的规定,达成如下协议,并由双方共同恪守。

第一条 乙方进行技术服务的内容、要求、方式:

- 1. 技术服务内容: 由乙方负责对甲方委托的上杭生活垃圾焚烧发电厂年度自行监测技术服务项目进行现场监测,按国家标准进行分析评价并出具具有 CMA 国家认可资质的报告,由乙方负责全部过程(具体要求见附件环境监测方案)。
- 2. 技术服务要求: 乙方应按甲方要求认真、真实地实施监测, 并提供该项目的当期监测数据报告。涉及到报告需要环保等相关部 门备案的乙方应认真落实,如备案需要甲方完成的乙方应协助相关 工作。
- 乙方应当按照下列进度要求进行本合同项目的技术服务工作:合同生效后按进度开展监测,并提供当期测量数据报告。

第四条 违约责任:

- 乙方违反第一条对监测时间、监测地点、监测数据等弄虚 作假,由此造成甲方损失的,甲方有权不支付合同款,并由乙方负 责赔偿相关损失;
- 2. 若乙方未能按照合同规定的时间交付报告(不可抗力除外),每逾期一天,乙方应按合同总金额的1%向甲方支付逾期违约金。逾期违约金,甲方有权从未付的合同款中予以扣除。若乙方逾期达30天,甲方有权单方解除本合同,乙方仍应按上述约定支付逾期违约金。若因此给甲方造成损失的,还应赔偿甲方所受的损失。
- 3. 乙方提交的报告应符合相应技术标准,监测数据准确可靠,若不符合上述要求,甲方有权单方解除合同,并要求乙方承担合同金额20%的违约金,若因此给甲方造成损失的,还应赔偿甲方所受的损失。若合同继续履行,乙方应当负责返工,或采取补救措施,由此发生的费用乙方自负;因乙方返工导致乙方未在约定时限内提交工作成果的,还应承担逾期违约责任;
- 4. 因甲方提供资料、数据,或文件导致乙方所作出的技术咨询工作不符合本合同要求,所造成乙方返工,或采取补救措施发生的费用由甲方另价支付;
- 5. 因乙方自身原因导致监测工作延误、无法继续执行监测的 或已完成监测工作失效的,甲方有权要求乙方进行整改;造成重大 影响和严重后果的,甲方有权解除合同并追回已支付相应金额;造 成甲方经济损失的,乙方应赔偿相应的经济损失(甲方经济损失 包括但不限于因监测工作失效或延误造成的停工损失、预期可得收 益、罚金、第三方检测机构委托费等)。

第五条 双方确定因履行本合同应遵守的保密义务如下: 甲方:

- 1. 保密内容(包括技术信息和经营信息): 乙方提供的资料
- 2. 涉密人员范围: 直接涉及本合同的甲方工作人员
- 3. 泄密责任: <u>依照法律法规承担责任</u> 乙方:
- 1. 保密内容(包括技术信息和经营信息): <u>甲乙双方对该项目</u> 原始资料、技术路线、实验报告、服务价格等由保密义务。未 经甲方书面、来函或邮件同意,乙方不得将本项目相关的资料、

样品、实验数据泄露给第三方。

- 2. 涉密人员范围: 直接或间接涉及本合同技术的有关人员
- 3. 泄密责任: 依照法律法规承担责任

第六条 本合同的变更必须由双方协商一致,并以书面形式确定。但有下列情形之一的,一方可以向另一方提出变更合同权利与义务的请求,另一方应当在<u>七</u>日内予以答复;逾期未予答复的,视为同意。

第七条 双方确定,按以下标准和方式对乙方提交的技术服务 工作成果进行验收:

- 1、乙方提交技术服务工作成果的形式: 提交甲方所委托项目监 测数据报告按国家标准进行分析评价并出具具有 CMA 国家认可资质 的报告。
- 2、技术咨询工作成果的验收标准:按照相关技术标准和方法开展调查工作,调查数据准确可靠,提交甲方所委托项目监测数据报告按国家标准进行分析评价并出具具有 CMA 国家认可资质的报告。
 - 3、监测地点: 福建省上杭县

第八条 双方确定,在本合同有效期内,甲方指定 <u>蓝庭珍</u>为甲方项目联系人,乙方指定 郭旭日 为乙方项目联系人。项目 联系人承担以下责任:

- 1. 落实本项目实施进度;
- 2. 进行本项目相关事宜沟通协调。

第九条 甲、乙双方确认本合同卷首载明的各项联系方式均为 双方指定。如甲、乙方任何一方的上述通讯地址发生变化,应向 另一方送交书面的变更告知书。另一方在收到变更告知书前,原 地址仍然有效。一方变更项目联系人的,应当及时以书面形式通 知另一方。未及时通知并影响本合同履行或造成损失的,应承担 相应的责任。

第十条 双方确定,出现下列情形,致使本合同的履行成为不必要或不可能的,可以解除本合同:

- 1. 发生不可抗力。
- 2. 一方违约,导致发生本合同约定的守约方可行使单方解除权的事由。

第十一条 双方因履行本合同而发生的争议,应协商、调解解

决。协商、调解不成的,确定按以下第2种方式处理:

- 1. 提交上杭仲裁委员会仲裁;
- 2. 依法向合同签订地上杭县人民法院起诉。

第十二条 本合同一式<u>肆</u>份,甲方执<u>叁</u>份,乙方执<u>壹</u>份,具有同等法律效力。

第十三条 本合同经双方签字盖章后生效。

第十四条 本合同附件: 1、检测项目及报价清单。

第十五条 如甲方突发环境应急事件,乙方应第一时间派监测小组前往甲方电厂监测污染因子,并完成实验室分析、出具监测报告。费用按本合同自行监测单价计算。

附件 22: 自查报告

环保自查报告

企业名称: 上杭红新能源科技有限公司

企业地址:福建省龙岩市上杭县临城镇土埔村狮子潭路 10号

联系人: 郑智明 联系电话: 13605930942

一、企业环保工作概况

上杭县住房和城乡建设局于 2019 年 1 月委托福建省金皇环保科技有限公司进行《上杭县生活垃圾焚烧发电项目》环境影响评价工作。2020 年 2 月,完成《上杭县生活垃圾焚烧发电项目环境影响报告书》编制; 2020 年 2 月 24, 龙岩市生态环境局出具审批意见。

2020年07月13日,福建东飞环境集团有限公司与上杭县住房和城乡建设局签署上杭县生活垃圾焚烧发电PPP项目投资合作协议。为保证项目日常运行项目,福建东飞环境集团有限公司成立上杭红新能源科技有限公司作为运营单位。项目于2020年12月11日开工建设,一期、二期工程同步建设。2023年11月完工,2023年08月17日取得排污许可证,2023年08月27日项目完成72+24h满负荷试运行,2023年12月14日通过性能试验,2024年03月,通过在线设备CEMS验收,并与重点排污单位自动监测与基础数据库系统联网。

二、环境影响评价与"三同时"执行情况

企业严格执行环保"三同时"制度,针对审批文件中载明的废气、废水、厂界噪声、固体废物治理项目,制定并落实了有效的环保治理措施。实际工程总投资 39114.38 万元,其中环保投资为 4207 万元,占总投资额 10.76%。

三、污染物达标排放情况

1、废水:

生产废水:

(1) 垃圾渗滤液

(1) 垃圾渗滤液、餐厨渗滤液

垃圾倒入储坑内后,垃圾外在水份及分子间水份经堆压、发酵逐渐渗滤至 垃圾储坑底部,产生大量的渗滤液。垃圾渗滤液经管道收集至渗滤液处理站处 理后,清水用于冷却塔,浓水用于石灰制浆、回喷炉膛及垃圾库。

(2) 冲洗废水

项目冲洗污水主要包括垃圾卸料区(含卸料大厅及运输道路、地磅区)和车辆车间冲洗水等高浓度有机废水。经管道收集至渗滤液处理站处理后,清水用于冷却塔,浓水用于石灰制浆、回喷炉膛及垃圾库。

(3) 除盐水系统排水

除盐水制备系统产生的浓水作为冷却水使用,反冲洗水排至渗滤液处理站 处处理。

(4) 锅炉排水

锅炉排水经降温处理后进入冷却塔作为冷却水使用。

渗滤液处理站处理工艺: UASB 厌氧+ MBR+NF+RO。

生活废水:

本项目生活污水经化粪池处理后经独立管道排入市政污水管网。

2、废气:

(1) 焚烧烟气:本项目2台焚烧炉对应烟气净化处理系统均采用"SNCR 脱硝+PNCR 脱硝+旋转喷雾反应塔+干粉喷射+碱液喷射系统脱酸+活性炭喷射+布袋除尘器"烟气净化处理工艺,处理后废气分别通过各自 100m 烟道,合并于 1 根集束烟囱排放。

(2) 恶臭防治措施

①垃圾贮坑除臭

垃圾坑是整个发电厂最大的臭气散发源,是除臭的重点控制区域。垃圾储坑是一个大空间密闭结构,供存储垃圾用,恶臭污染源主要是由垃圾产生的异味,其主要成分为硫化氢、氨等。

焚烧炉正常运行时,垃圾坑内有机物发酵产生污浊空气。为使污浊空气不外逸,垃圾坑设计为封闭式。含有臭气的空气被焚烧炉一次风装置从垃圾坑上部的吸风口吸出,使垃圾坑内形成负压,作为燃烧空气从炉排底部的渣斗送入

焚烧炉,在炉内臭气污染物被燃烧、氧化、分解。同时在垃圾储坑内安装压力 监控系统,、保证焚烧炉和余热锅炉在运行时保持负压禁止正压防止臭气外逸。

②垃圾渗滤液收集池除臭

渗滤液收集池为密闭结构,其内部的恶臭气体通过管道连接到垃圾池,与 垃圾池中的恶臭气体一并作为一次进风燃烧处理。并设置一套活性炭吸附作为 备用废气处理设施: 厌氧池设置火炬焚烧装置作为日常产气安全处置措施。

③餐厨垃圾处理车间

餐厨垃圾在处理过程中自身发酵会产生恶臭废气,其主要污染物为氨和硫化氢。餐厨垃圾处理车间恶臭采用密闭、负压,日常提供通过管道送至焚烧炉垃圾贮坑作为一次风焚烧处理,应急采用"两级化学(酸碱)"除臭工艺。

④卸料大厅

卸料大厅为封闭式;未进行作业的卸料门为关闭状态,卸料大厅处于微负 压状态。抽至垃圾贮坑作为一次风焚烧处理

⑤应急除臭

在垃圾焚烧炉停炉检修时,为防止垃圾产生的硫化氢、氨等臭气在空气中凝聚外溢,日常停炉时通过喷洒植物液除臭剂进行除臭,利用植物液除臭剂与臭味因子接触后瞬间分解臭味分子和产生臭味的各种有机物,将其转化为二氧化碳和水以及微生物细胞成分,从而达到去除臭味的目的。并设置一套活性炭应急除臭装置。(除臭剂技术说明书见附件 17)。

(3) 粉尘防治措施

- ①飞灰仓废气:飞灰仓通过筒仓配套的布袋除尘处理后经排气口排放;
- ②水泥仓废气:水泥仓通过筒仓配套的布袋除尘处理后经排气口排放:
- ③活性炭仓废气:活性炭仓通过筒仓配套的布袋除尘处理后经排气口排放;
- ④石灰仓废气:活性炭仓通过筒仓配套的布袋除尘处理后经排气口排放;
- ⑤飞灰暂存库废气:飞灰暂存库废气经收集后经喷淋设施处理后由排气筒排放。

项目喷淋设施均采用自动控制,并附有报警设施,对喷淋液酸碱度进行监控。

(4) 无组织

无组织恶臭主要污染物包括: H2S、NH3、臭气浓度等。

3、噪声:

本项目的噪声源主要为:

①各种机械运转时产生的噪音如:风机、水泵、空气压缩机、汽轮发电机等设备,噪音具有持续性。

②一些热力设备的排汽

锅炉生炉放空管或超压时安全阀放空管对空排汽,定期排污时产生的噪音。

③交通噪声

车辆行驶、加速或上坡时产生的噪声。

运行期厂界噪声执行《工业企业厂界环境噪声排放标准》 (GB 12348-2008) 中的 3 类标准)(昼间≤65dB, 夜间≤55dB)。

4、固废:

本项目产生的固体废物分一般工业固废和危险固体废物。

本项目新建危险废物仓库,危废仓库的位置位于主厂房北侧,面积为 60m²。 并建有飞灰养护间面积 360m²。

一般工业固废:

(1) 炉渣

焚烧炉渣由炉排尾部落入湿式除渣机,属于一般工业废物,收集后由福州 美佳环保资源开发有限公司处置。

(2) 生活垃圾

职工日常生活产生的生活垃圾,经垃圾桶收集后,由本项目作为原料焚烧 处理。

(3) 渗滤液处理站污泥

本项目垃圾渗滤液处理站运行过程中产生污泥,进入焚烧炉焚烧处理。

(4) 餐厨垃圾处理后固体渣料

这些固体渣料通过提升输送机输送至生活垃圾贮坑中,与生活垃圾混合后 一起送入焚烧炉焚烧处理。

危险废物:

(1) 飞灰

本项目飞灰为烟气净化过程中产生的飞灰,主要成分为 SiO_2 、 Al_2O_3 、 Fe_2O_3 等化合物以及少量重金属元素成分,飞灰暂存于灰罐中,飞灰螯合固化稳定后,送配套的填埋场填埋。

(2) 布袋除尘器更换的破损布袋

本项目运行至今未对布袋除尘器布袋进行更换,待废布袋产生后委托处置。

(3) 废离子交换树脂

废离子交换树脂主要来源于化水车间产生,本项目运行至今未更换离子交 换树脂,待产生后委托处置。

(4) 废机油

废机油主要来源于设备修磨、机修过程,本项目运行至今未更换机油,待 废机油产生后委托进行处置。

(5) 废活性炭

废活性炭主要来源于应急垃圾储坑除臭净化设施等废气处理设施,本项目运行至今未更换活性炭,待废活性炭产生后委托处置。

(6) 废岩棉

本项目蒸汽管道定期更换废岩棉, 待产生后委托进行处置。

(7) 废膜组件

项目渗滤液处理设施定期更换膜组件交由原厂回收处理。

(8) 废弃的含油抹布, 劳保用品

本项目劳动人员机修过程会产生少量废弃的含油抹布,劳保用品,混入生活垃圾,同生活垃圾进入焚烧炉焚烧处理。

(9) 实验室废液

化验室会产生少量的实验室废液,待产生后,交由有资质单位接收处理。

四、环境管理制度与环境风险防范情况

上杭红新能源科技有限公司由 EHS 部负责全厂的环保管理,厂内设专职安全环保管理员,执行保护环境的职能,组织环境监测及监督"三废"治理,并形成制度化。

本项目建立完善的安全生产管理机构及制度,厂区设置危险源监控装置,安装摄像头对柴油罐区及其他危险源进行监控,安装在线烟气排放连续监测系统,实时监控烟气的各项指标。对厂区各个危险源监控设施进行定期的检测、检验,并做好检测、检验记录。渗滤液处理站设置事故废水池有效容积 1916m³,并设有 510m³初期雨水收集池,在初期雨水收集池安装切换阀门。

2023 年 10 月 30 日建设单位根据《突发环境事件应急预案管理暂行办法》等相关文件编制了《上杭县生活垃圾焚烧发电项目厂突发环境事件应急预案》,已经向当地主管部门(龙岩市上杭生态环境局)备案(备案号 350823-2023-020-M)。

已在焚烧车间、危废暂存库、在线监测平台等处安装监控,全厂消防实行联动控制,24小时有专人值守,以保证厂区的消防安全。

项目氨水罐区设有 150m³ 围堰,氨水罐体 30m³,餐厨油脂罐设有 20m³ 围堰,餐厨油脂罐体 20m³。

项目排污口均已设置规范化排污口和排污口标识,并对废气排气筒安装了在线监测装置(二氧化硫、氮氧化物、烟尘、一氧化碳、含氧量、氯化氢、炉膛温度、DCS温度、湿度、烟气压力、流量)。项目自行进行在线监测设施的运维工作。

本项目垃圾储坑,污水处理站等重点区域均有做防渗工程,设置 2 口地下水监测井。根据《上杭红新能源科技有限公司土壤和地下水自行监测方案及自行监测报告》,为了防止项目污染物渗漏对地下水的污染影响,建设单位要严格落实本次评价提出的污染分区防渗措施。根据《环境影响评价技术导则 地下水环境》(HJ610-2016),地下水污染防渗分区划分为重点防渗区、一般防渗区、简单防渗区。对不同等级污染防治区采取相应等级的防渗方案。

五、危险废物规范化管理

为了进一步加强我公司危险废物规范化管理,提高危险废物规范化管理水平,有效控制环境风险。根据各级环保监督部门对危险废物管理要求,对危险废物规范管理如下:

1.危险废物规范化管理遵守《中华人民共和国固体废物污染环境防治法》、 《危险废物转移联单管理办法》、《危险废物贮存污染控制标准》、《国家危险废 物名录》、《福建省固体废物污染环境防治若干规定》等相关法律法规。

- 2.制定危险废物管理制度。
- 3.设立危险废物暂存仓库,依据《危险废物规范化管理指标体系》进行现场管理,确保危废仓库安全合规。
- 4.针对危险废物的产生、收集、转运、贮存等流程,制定完善的流程制度,对相关操作人员定期培训。
- 5.建立危险废物管理档案,登记危险废物台帐并每日录入到福建省固废管理系统中,定期进行转移申报。
- 6.危险废物的处置,选择具有相关资质的供应商签订处置协议,并定期对处置商做出评估,必要时现场走访处置商,查看其处置能力、设备、工艺等情况,确认后列入合格处置废弃物商名单。

7.应急预案,针对可能发生的泄漏事件,制定应急处置预案,应定期对人员进行演练、培训。

六、重大变动

对照《污染影响类建设项目重大变动清单(试行)》,本项目建设性质、生产规模、地点、生产工艺、环境保护措施和环评相比基本一致,不属于重大变动。

七、环保自查的结论

我司严格执行环保"三同时"制度,环境管理制度完善,环保设施完备,环境影响因子检测结果均符合相关标准。

我司将继续在各级环保部门的指导下,进一步加强人员培训,完善并积极落实环境管理制度;持续提升环境保护管理水平。

上杭红新能源科技有限公司

2023年12月01日

附件 23: 验收意见

上杭县生活垃圾焚烧发电项目竣工环境保护验收意见

2024年2月25日,上杭红新能源科技有限公司在龙岩市上杭县组织召开"上杭县生活垃圾焚烧发电项目"竣工环境保护验收会,参加会议的有上杭红新能源科技有限公司(建设单位)、福建宏其检测科技有限责任公司(验收监测单位、编制单位)等单位代表及应邀的4位专家,共14人,会议成立了项目竣工环保验收组(名单附后)。与会代表和专家进行了现场检查,听取了建设单位关于项目建设、环保自查情况的汇报和报告编制单位对验收报告的介绍。对照《建设项目竣工环境保护验收暂行办法》,严格依照国家有关法律法规、建设项目竣工环境保护设施验收技术规范和指南、本项目环境影响报告表和审批部门审批决定等要求,经认真讨论,形成验收组意见如下:

一、工程建设基本情况

(一) 建设地点、规模、主要建设内容

上杭县生活垃圾焚烧发电项目位于福建省龙岩市上杭县临城镇土埔村狮子潭路10号。

项目主要建设规模为 600t/d,设 2 条 300t/d 垃圾焚烧生产线,配 1×12MW 凝汽机组,实际工程一、二期同步建设,工程建设 2 条 300t/d 焚烧生产线,配 1×12MW 凝汽机组,建设 1条 30t/d 餐厨垃圾生产线。

(二) 建设过程及环保审批情况

上杭县住房和城乡建设局于 2019 年 1 月委托福建省金皇环保科技有限公司进行《上杭县生活垃圾焚烧发电项目》环境影响评价工作。2020 年 2 月,完成《上杭县生活垃圾焚烧发电项目环境影响报告书》编制; 2020 年 2 月 24, 龙岩市生态环境局出具审批意见(龙环审[2020]68 号)。

2020年07月13日,福建东飞环境集团有限公司与上杭县住房和城乡建设局签署上杭县生活垃圾焚烧发电PPP项目投资合作协议。为保证项目日常运行,福建东飞环境集团有限公司成立上杭红新能源科技有限公司作为运营单位。项目于2020年12月11日开工建设,一期、二期工程同步建设。项目于2023年11月完工,2023年08月17日取得排污许可证,2023年08月27日项目完成72+24h

满负荷试运行。2023年12月14日通过性能试验。

(三)投资情况

项目实际工程总投资 39114.38 万元,其中环保投资为 4207 万元,占总投资额 10.76%。

(四)验收范围

上杭县生活垃圾焚烧发电项目工程主体建设内容及相关辅助设施,运输过程不属于本次验收范围。

二、工程变动情况

对照《污染影响类建设项目重大变动清单(试行)》,本项目建设性质、生产规模、地点、生产工艺、环境保护措施和环评相比基本一致,不属于重大变动。

三、环境保护设施建设情况

(一) 废水

1、生产废水

(1) 垃圾渗滤液、餐厨渗滤液

垃圾渗滤液经管道收集至渗滤液处理站处理后,清水用于冷却塔,浓水用于石灰制浆、回喷炉膛及垃圾库。

(2) 冲洗废水

项目冲洗污水主要包括垃圾卸料区(含卸料大厅及运输道路、地磅区)和车辆车间冲洗水等高浓度有机废水。经管道收集至渗滤液处理站处理后,清水用于冷却塔,浓水用于石灰制浆、回喷炉膛及垃圾库。

(3) 除盐水系统排水

除盐水制备系统产生的浓水作为冷却水使用,反冲洗水排至渗滤液处理站 处处理。

(4) 锅炉排水

锅炉排水经降温处理后进入冷却塔。

2、生活污水

本项目生活污水经化粪池处理后接入市政污水管网,排至上杭县佳波污水 处理厂处理。

(二) 废气

- 1) 有组织
- 1、生活垃圾焚烧废气:
- 2 台焚烧炉分别经配套的"SNCR 脱硝+PNCR 脱硝+旋转喷雾反应塔+干粉喷射+碱液喷射系统脱酸+活性炭喷射+布袋除尘器"烟气净化处理工艺,处理后废气分别通过各自 100m 烟道,合并于 1 根集束烟囱排放;
 - 2、垃圾渗滤液收集池除臭:

渗滤液收集池为密闭结构,其内部的恶臭气体通过管道连接到垃圾池,与 垃圾池中的恶臭气体一并作为一次进风燃烧处理。并设置一套活性炭吸附作为 备用废气处理设施。厌氧池设置火炬焚烧装置作为日常产气安全处置措施;

3、餐厨垃圾处理车间:

餐厨垃圾处理车间恶臭采用密闭、负压,日常提供通过管道送至焚烧炉垃圾贮坑作为一次风焚烧处理,应急采用"两级化学"除臭工艺;

- 4、应急除臭尾气:在垃圾焚烧炉停炉检修时,为防止垃圾产生的硫化氢、 氨等臭气在空气中凝聚外溢,日常停炉时通过喷洒植物液除臭剂进行除臭,并 设置活性炭吸附应急除臭设施;
 - 5、飞灰仓废气:飞灰仓通过筒仓配套的布袋除尘处理后经排气口排放;
 - 6、水泥仓废气:水泥仓通过筒仓配套的布袋除尘处理后经排气口排放:
 - 7、活性炭仓废气:活性炭仓通过筒仓配套的布袋除尘处理后经排气口排放;
 - 8、石灰仓废气: 活性炭仓通过筒仓配套的布袋除尘处理后经排气口排放:
- 9、飞灰暂存库废气:飞灰暂存库废气经收集后经喷淋设施处理后由排气筒排放。
 - 2) 无组织废气

无组织废气主要污染物包括:硫化氢、氨、颗粒物等。项目采取厂房密闭、喷洒生物除臭剂等措施,减少无组织废气的产生。

(三)噪声

项目噪声主要来源于生产车间的生产设备运转噪声,通过选用低噪声设备 及车间隔声等措施,减少项目噪声产生。

(四)固体废物

1)一般工业固体废物

①炉渣

焚烧炉渣由炉排尾部落入湿式除渣机,属于一般工业废物,收集后由福州 美佳环保资源开发有限公司处置。

②生活垃圾

职工日常生活产生的生活垃圾,经垃圾桶收集后,由本项目作为原料焚烧 处理。

③渗滤液处理站污泥

本项目垃圾渗滤液处理站运行过程中产生污泥, 进入焚烧炉焚烧处理。

4)餐厨垃圾处理后固体渣料

这些固体渣料通过提升输送机输送至生活垃圾贮坑中,与生活垃圾混合后 一起送入焚烧炉焚烧处理。

2) 危险固体废物

厂区内的危险固体废物包括①烟气处理系统收集的飞灰;②布袋除尘器更换的破损布袋;③废催化剂;④废机油;⑤废活性炭等。

暂存于主厂房北侧的危险废物贮存间,为防止危险废物泄漏,厂区根据《危险废物贮存污染控制标准》(GB 18597-2023)的要求,对危险废物的贮存进行管理。

① 烟气处理系统收集的飞灰

固化稳定后,送上杭县生活垃圾填埋场填埋;

② 废弃的含油抹布, 劳保用品

进入焚烧炉焚烧处理:

③ 废膜组件

交由原厂回收处理;

④ 废布袋、废活性炭、废机油、废离子交换树脂、废岩棉、实验室废液 暂未产生,产生后送有资质单位集中处置,已于福建绿洲固体废物处置有 限公司签订合同。

(五) 其他环境保护设施

2023 年 10 月 30 日建设单位根据《突发环境事件应急预案管理暂行办法》

等相关文件编制了《上杭县生活垃圾焚烧发电项目厂突发环境事件应急预案》,已经向当地主管部门(龙岩市上杭生态环境局)备案(备案号 350823-2023-020-M)。本项目对废气及废水排放口进行编号,分类管理,废气排放口设置规范化采样口,并配有标识。废气排气筒安装了在线监测装置(二氧化硫、氮氧化物、烟尘、一氧化碳、含氧量、氯化氢、炉膛温度、DCS 温度、湿度、烟气压力、流量)。

四、环境保护设施调试效果

根据监测报告监测结果表明:

(一)环保设施处理效率

根据本次竣工验收检测数据,渗滤液处理站废气处理设施硫化氢处理效率为 57.9%,氨处理效率为 62.6%;餐厨垃圾事故处理设施硫化氢处理效率为 33.9%,氨处理效率为 45.9%;应急除臭处理设施硫化氢处理效率为 54.5%,氨处理效率为 74.9%;飞灰暂存库处理设施颗粒物处理效率为 38.0%;渗滤液处理设施 COD 处理效率 99.9%,氨氮处理效率 99.9%。

(二)废水

验收检测期间,生活废水出口废水各项检测项目排放浓度均低于《污水综合排放标准》(GB 8978-1996)三级排放标准限值要求,其中氨氮低于《污水排入城镇下水道水质标准》(GB/T 31962-2015)表 1 中 B 级标准,可达标排放。

生产废水出口各检测项目浓度均低于《城市污水再生利用工业用水水质》 (GB/T 19923-2005)表 1 中敞开式循环冷却水补水水质要求。

(三) 废气

(1) 有组织废气

验收检测期间,(焚烧炉出口)废气各项检测指标排放浓度均低于《生活垃圾焚烧污染控制标准》(GB 18485-2014)表 4 规定的排放限值要求,氮氧化物低于(DB 35/1976-2021)《生活垃圾焚烧氮氧化物排放标准》表 2 规定的排放限值,可达标排放;飞灰仓排气筒、石灰仓排气筒、活性炭仓排气筒、水泥仓排气筒、飞灰暂存库处理设施出口颗粒物均低于《大气污染物综合排放标准》(GB 16297-1996)表 2 规定的排放限值,可达标排放;渗滤液处理站废气处理

设施出口、餐厨垃圾事故处理设施出口、应急除臭处理设施出口废气各项检测指标均低于《恶臭污染物排放标准》(GB 14554-1993)表 2 标准,可达标排放。

(2) 无组织废气

验收检测期间,无组织废气厂界监控点(氨、硫化氢、臭气浓度)最大浓度均低于《恶臭污染物排放标准》(GB 14554-93)表 1"新扩改二级"标准限值要求,可达标排放;其中颗粒物最大浓度低于《大气污染物综合排放标准》(GB 16297-1996)表 2 限值要求,可达标排放。

(四)噪声

验收检测期间,项目厂界昼、夜间噪声均符合《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准限值。

(五) 固体废物

项目螯合固化后的飞灰浸出液浓度符合《生活垃圾填埋场污染控制标准》 (GB 16889-2008)表 1 标准;炉渣热灼减率符合《生活垃圾焚烧污染控制标准》 (GB 18485-2014)表 1 标准。

(六) 工程建设对环境的影响

验收检测期间,敏感目标各检测点位(TSP、PM₁₀、CO、SO₂、NO₂、重金属、氯化氢等)浓度均符合《环境空气质量标准》(GB 3095-2012)表 1、表 2 中浓度限值要求;二噁英浓度符合日本环境空气质量限值。

(五)总量控制

按年生产 8000 小时计,根据本次竣工验收检测数据,SO₂ 的排放量为 2.75 吨/年,NO_X的排放量为 51.0 吨/年。颗粒物的排放量为 0.747 吨/年。换算成满负荷工况下排放量为: SO₂的排放量为 3.45 吨/年,NO_X的排放量为 63.9 吨/年。颗粒物的排放量为 0.936 吨/年。满足龙岩市环境保护局批复二氧化硫≤38.4 吨/年、氦氧化物<138..24 吨/年的要求。

项目生产废水未外排,故无需对其排放总量进行核算。

根据《建设项目主要污染物排放总量指标审核及管理暂行办法》(环发 [2014]197 号),城镇生活污水处理厂、垃圾处置场(厂)、危险废物和医疗废物 处置厂不在其适用范围。本项目为垃圾处置厂,因此,项目主要污染物排放指 标不需要进行审核和管理,不需重新向环境主管部门申请废水、废气污染物排

放总量指标。

五、验收结论

经现场检查、审阅有关资料和认真审议并按《建设项目竣工环境保护验收暂行办法》中所规定的验收不合格情形对项目逐一对照检查后,验收组认为本项目现阶段的建设内容基本落实了环评文件及批复要求,验收期间环保设施正常运行,同意通过本次竣工环保验收。

六、结论后续要求

- 1、加强环境管理,强化相关的环境保护制度并贯彻落实;
- 2、对照《排污单位自行监测技术指南 总则》的要求,切实落实企业自行 监测并信息公开;
 - 3、加强日常环境风险隐患排查,定期开展环境风险事故应急演练;
 - 4、加强日常地下水监测、完善在线监测验收及联网材料;
 - 5、进一步完善验收报告内容。
 - 附:上杭县生活垃圾焚烧发电项目竣工环境保护验收组成员名单

上杭红新能源科技有限公司 2024年2月25日

上杭县生活垃圾焚烧发电项目 竣工环境保护验收验收组成员名单

日期: 24年2月15日

姓名	单位	职称/职务	签字
VE	3.花立美的海拔的	副差	丁弘
287	上层心和影像并发明的	रंग्येन १५४६	grap.
湖南	上水小的能源科技和风	多种的	神师
Min 3	しまれる新教神をから	WARTERY.	24.3
aljas/ft	上括白新花海钟技术解码	运行和规则	和消傷.
apainth	南できれば此心りかから	dz	Minte
水峰	都接上的私站	FI	林柱
Eleph .	如就在此知识的	為主	胡乱比
被激	高级建造104心之的(B)	萬工	古姓成
	三线塔纳设计这位数据	杨春	Eppen
吴本省 王	上挑出11多城级美生少井	村在	乳粉玉
Mary 3	之此其海水等立场的	ASR	severy
林梅		中工	-\$343VJ
Vote	福建完建培训科的研究发化公司	总征遣	88/2
	V		100000
	1		
	THE STATE OF THE S		

附件 24: 验收公示

附件 25: 复审意见

《上杭县生活垃圾焚烧发电项目竣工环境保护验收监测报告》 复审意见

2024年2月25日,上杭红新能源科技有限公司在龙岩市上杭县组织召开"上杭县生活垃圾焚烧发电项目"竣工环境保护验收会,与会专家、代表提出了现场整改和报告修改意见。2024年3月19日,上杭红新能源科技有限公司提交了《上杭县生活垃圾焚烧发电项目竣工环境保护验收监测报告》修改稿。经审核,上杭红新能源科技有限公司根据专家意见对部分现状存在的问题进行整改并提供了佐证材料,验收报告根据专家、代表的意见进行了修改,修改后的验收报告满足项目竣工验收报告编制技术规范,可作为竣工验收依据,专家组同意本项目通过竣工环境保护验收。

专家组长: 如如此

2024年3月20日

附件 26: 其他需要说明事项

其他需要说明的事项

1 环境保护设施设计、施工和验收过程简况

1.1 设计简况

建设项目已将环境保护纳入了初步设计,环境保护设施的设计符合环境保护 设计规范的要求,编制了环境保护篇章,落实了防止污染和生态破坏的措施和环 境保护设计投资概算。

1.2 施工简况

建设项目已将环境保护设施纳入了施工合同,环境保护设施的建设进度和资 金均得到了保证,项目建设过程中组织实施了环境影响报告表及其审批部门审批 决定中提出的环境保护对策。

1.3 验收过程简况

上杭县住房和城乡建设局于2019年1月委托福建省金皇环保科技有限公司进行《上杭县生活垃圾焚烧发电项目》环境影响评价工作。2020年2月,完成《上杭县生活垃圾焚烧发电项目环境影响报告书》编制;2020年2月24,龙岩市生态环境局出具审批意见。

2020年07月13日,福建东飞环境集团有限公司与上杭县住房和城乡建设 局签署上杭县生活垃圾焚烧发电PPP项目投资合作协议。为保证项目日常运行 项目,福建东飞环境集团有限公司成立上杭红新能源科技有限公司作为运营单 位。项目于2020年12月11日开工建设,一期、二期工程同步建设。2023年11 月完工、2023年08月17日取得排污许可证、2023年08月27日项目完成72+24h 满负荷试运行,2023年12月14日通过性能试验,2024年03月,通过在线设备 CEMS 验收,并与重点排污单位自动监测与基础数据库系统联例。

2023年11月,上杭红新能源科技有限公司委托福建宏其检测科技有限责任 公司协助进行上杭县生活垃圾焚烧发电项目工程竣工环境保护验收工作。2024年01月15日~01月18日,福建宏其检测科技有限责任公司根据现场勘查情况 开展了本项目竣工环境保护验收监测,并在竣工环境保护验收监测结果、现场环境管理检查及企业自查报告等资料的基础上编制本项目竣工环境保护验收监测 报告。2024年2月编制完成《上杭县生活垃圾焚烧发电项目竣工环境保护验收 监测报告表》,2024年2月25日上杭红新能源科技有限公司组织召开验收会, 本次验收为企业自主验收。验收小组包括上杭红新能源科技有限公司(建设单位)、福建宏其检测科技有限责任公司(验收监测单位、编制单位)等单位代表 及应邀的4位专家,共14人。验收小组以书面形式对验收报告提出验收意见, 同意本项目通过竣工环境保护验收。

2 其他环境保护措施的实施情况

环境影响报告表及其审批部门审批决定中提出的除环境保护设施外的其他 环境保护措施主要为环境管理,实施情况如下:

2.1 制度措施落实情况

(1)环保组织机构及规章制度

上杭红新能源科技有限公司由 EHS 部负责全广的环保管理。厂内设专职安全环保管理员,执行保护环境的职能,组织环境监测及监督"三废"治理,并形成制度化。

本项目建立完善的安全生产管理机构及制度,厂区设置危险源监控装置,安装摄像头对柴油罐区及其他危险源进行监控,安装在线烟气排放连续监测系统,实时监控烟气的各项指标。对厂区各个危险源监控设施进行定期的检测、检验,并做好检测、检验记录。

(2)环境风险防范措施

渗滤液处理站设置事故废水池有效容积 1916m³。并设有 510m³ 初期雨水收集池, 在初期雨水收集池安装切长阀门。

2023年10月30日建设单位根据《突发环境事件应急预案管理暂行办法》等相关文件编制了《上杭县生活垃圾焚烧发电项目厂突发环境事件应急预案》,已经向当地主管部门(龙岩市上杭生态环境局)备案(备案号350823-2023-020-M)。

(3)环境监测计划

本项目已委托福建省永正生态科技有限公司开展自行检测,检测期间未见数据异常,检测信息定期发布于福建省污染源监测信息综合发布平台。

2.2 配套设施落实情况

(1)区域内消减及淘汰落后产能

建设项目不涉及区域内消减污染物总量措施和淘汰落后产能的措施,无需说

明。

2.3 其他措施落实情况

建设项目不涉及林地补偿、珍稀动植物保护、区域环境整治、相关外围工程 建设等情况,无需落实。

3 整改工作情况

根据验收意见, 建设项目整改情况如下:

序号	整改内容	整改情况说明	· 作
1	渗滤液处理站灰氧池无组织臭气治理及 火炬整改	根据厂家提修已发设计院设计,根采用气囊收集至火炬类流,由于设计方案、出图、公司招标及颇工流程较长,项目急击落实环保验收工作。为尽快完成环保验收。现承诺于2024年10月1日(计划时间)前完成改造工作。并对,厌气油采取应急封堵措施,见附件	
2	卸料区卷管门车辆入场会无法正常关闭	已完成擊改, 运行正常见附件 一、	
3	危废暂存间墙体渗漏及废气收集	已完成整改、见附件三	
4	生产原料无专门仓库,均增放于生产车 间内	午 已将生产原料报离生产车间, 专门存放,见附件四	
5	补充加药间配制记录	己补充对应标识, 见附件五	
6	补充管道流向标识	己补充标识, 见附件六	
7	完善排放口标识	已完善对应标识。见附件七	
8	生产废水长期回用是否可行	已在制度进行规定。见附件八	
9	变更排污许可证	心进行中	
10	完善危废暂存间的标识	已完善对应标识。见附件三	
11	完善地下水监测井建设	已建设完成,对应图片见附件 九	
12	补充自查报告	己补充。见验收报告	
13	补充在线验收报告	己补充, 见验收报告	

上杭红新能源科技有限公司

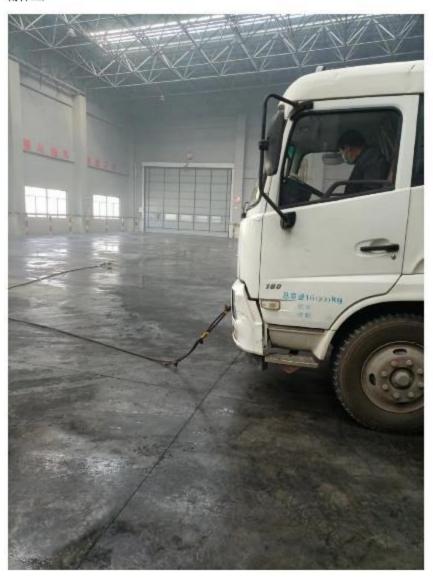
2024年3月17日

附件一:

厌氧池封堵

上杭红新能源科技有限公司

上杭红 [2024] 8号


承诺函

我司涤滤液站火炬系统,由于收集效果不佳,经常造成无法点燃火炬,我司已联系厂家提资。目前已发设计院出改造力案,拟 采用气囊收集或者其他方案进行改造,由于设计方案、出图、公司招标及施工流程时间较长,现我司承诺于2024年10月1日(计划时间)前完成改造工作。

特此承诺!

上杭红新能游和技有限公司 2024年3月11日

附件二:

附件三:

附件四:

附件五:

附件六:

附件-七:

附件八:

上杭红新能源科技有限公司

- 在部门的直接领导下负责公司渗滤液处理的工艺质量、跟踪监测。 确保污水处理达标回用。
- 配合污水运行人员及时、准确、实事求是地作好各项检测分析工。
- 3、整理、保管好原始分析数据并及时反映水质情况;
- 4、保管好化学药品,对有危险、剧毒的药品要核有关规定存放;
- 5、配制所需各种标准溶液、校正仪器、绘制标准曲线等;
- 6、做好化验室的仪器卫生及保养工作,确保安全使用;
- 7、严格遵守厂各项规章制度、确保化验室长年水质检测不脱人; 本工程渗渍液处理出水水质必须达到 GB/T 19923-2005 《城市污水再生利用工业用水水质》 标准中敞开式循环冷却水系统补充水标准后回用作循环冷却水系统补充水。循环用水必须每天化验、当化验数据超出该范围。需立即通知污水班长。打入垃圾库。不予回用。连续一周均无法达标时,处理能力超过渗滤液站处理能力时。需及时向公司领导汇报,及时联系罐车运牲其他污水厂协调处理。

具体水面标准见下表

項目	敞开式循环冷却水系统补充水
pH 值	6,5-8,5
悬浮物 (SS) (ng/L)	≤10
油度 (NTU)	<5
色度(度)	≤30
生化需氧量 (B0D5) (wg/L)	≤10
化学需氧量 (000er) (mg/L)	≤50
铁 (mg/L)	<€0. 3
锰 (ng/L)	≤0.1
無高子 (rg/L)	≤250
二氧化硅 (SiO ₂)	≤50
总硬度(以 CaCO, 针/mg/L)	≪450

項目	敞开式借环冷却水系统补充水
終職度(以 GaOO, 計 mg/L)	≪350
硫酸盐 (mg/L)	≤250
劉類 (以N计 mg/L)	≤10
慈禧(以P计 rg/L)	6(1, 0
溶解性总固体 (ng/L)	≤1000
石油类 (ng/L)	≤1.0
阴离子表面活性剂 (mg/L)	≤0.5
余氯(2) (mg/L	≥0.05
奏大肠菌群(个/L) 总大肠细菌群	<2000 —

附件九:

